IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i3p1797-1801.html
   My bibliography  Save this article

Using climate classification to evaluate building energy performance

Author

Listed:
  • Lee, Wen-Shing
  • Kung, Chung-Kuan

Abstract

Traditional benchmarking of building energy performance usually starts by considering a wide range of different factors and giving these factors different weights to help reach one general indicator measuring a building’s overall energy performance. For obtaining more specific information in building energy management performance, this paper proposes an adjustment to the traditional approach by using climate classification and data envelopment analysis (DEA). The study first adopts cluster analysis to classify the evaluated buildings into different climate clusters. Secondly, scale factors are identified by regression analysis. DEA is then employed to assess the energy management efficiency of the evaluated buildings. The samples of 122 office buildings in Taiwan in summer are classified into three climate clusters (warm and long rain hour, hot and middle rain hour, and hot and short rain hour). Research results indicate that the average indicators of energy management performance in each of the three climate clusters are 0.5, 0.56, and 0.56 respectively. The lower value indicator of energy management performance, resulted from the comparison between the energy consumption of the evaluated building and the minimum energy consumption among buildings in the same scale and similar climate conditions, indicates a more potential in energy saving.

Suggested Citation

  • Lee, Wen-Shing & Kung, Chung-Kuan, 2011. "Using climate classification to evaluate building energy performance," Energy, Elsevier, vol. 36(3), pages 1797-1801.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:3:p:1797-1801
    DOI: 10.1016/j.energy.2010.12.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210007243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.12.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Wen-Shing, 2010. "Benchmarking the energy performance for cooling purposes in buildings using a novel index-total performance of energy for cooling purposes," Energy, Elsevier, vol. 35(1), pages 50-54.
    2. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Chung, William & Hui, Y.V. & Lam, Y. Miu, 2006. "Benchmarking the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 83(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Guanghui & Chung, William & Zhang, Xiliang, 2013. "A study of carbon dioxide emissions performance of China's transport sector," Energy, Elsevier, vol. 50(C), pages 302-314.
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
    4. Katerina Tsikaloudaki & Kostas Laskos & Dimitrios Bikas, 2011. "On the Establishment of Climatic Zones in Europe with Regard to the Energy Performance of Buildings," Energies, MDPI, vol. 5(1), pages 1-13, December.
    5. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
    6. Goto, Mika & Otsuka, Akihiro & Sueyoshi, Toshiyuki, 2014. "DEA (Data Envelopment Analysis) assessment of operational and environmental efficiencies on Japanese regional industries," Energy, Elsevier, vol. 66(C), pages 535-549.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Wen-Shing, 2010. "Benchmarking the energy performance for cooling purposes in buildings using a novel index-total performance of energy for cooling purposes," Energy, Elsevier, vol. 35(1), pages 50-54.
    2. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    3. Khoshroo, Alireza & Mulwa, Richard & Emrouznejad, Ali & Arabi, Behrouz, 2013. "A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production," Energy, Elsevier, vol. 63(C), pages 189-194.
    4. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Mohammadi, Ali, 2011. "Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis," Energy, Elsevier, vol. 36(2), pages 909-916.
    5. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    6. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    7. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    8. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    9. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    10. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    11. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    12. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    13. Ravelojaona, Paola, 2019. "On constant elasticity of substitution – Constant elasticity of transformation Directional Distance Functions," European Journal of Operational Research, Elsevier, vol. 272(2), pages 780-791.
    14. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    15. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    16. Keh, Hean Tat & Chu, Singfat, 2003. "Retail productivity and scale economies at the firm level: a DEA approach," Omega, Elsevier, vol. 31(2), pages 75-82, April.
    17. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    18. da Silva, Aneirson Francisco & Miranda, Rafael de Carvalho & Marins, Fernando Augusto Silva & Dias, Erica Ximenes, 2024. "A new multiple criteria data envelopment analysis with variable return to scale: Applying bi-dimensional representation and super-efficiency analysis," European Journal of Operational Research, Elsevier, vol. 314(1), pages 308-322.
    19. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    20. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:3:p:1797-1801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.