IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i2p1255-1264.html
   My bibliography  Save this article

Market-clearing for pricing system security based on voltage stability criteria

Author

Listed:
  • Kim, M.K.
  • Park, J.K.
  • Nam, Y.W.

Abstract

This paper presents a novel technique for representing system security in the operation of decentralized electricity markets, with special emphasis on voltage stability. The market-clearing algorithm is modeled as voltage stability constrained-optimal power flow (VSC-OPF) problem for providing market solutions by means of a function of complying with the required voltage stability criteria. Benders’ decomposition is applied for solving the VSC-OPF incorporating post-contingency control actions, which is motivated by the improvement of computational efficiency using parallel processing. The proposed VSC-OPF framework also takes into consideration the bilateral contract information, which is integrated into the market-clearing process and, at the same time, the optimal pricing expressions through computing local marginal prices (LMPs) with respect to ensuring voltage stability are derived. VSC-OPF is tested on the IEEE 14-bus benchmark system and the results obtained, when compared to those obtained by means of a conventional OPF, show that the proposed technique is able to improve system security while yielding better market solutions and total transaction levels.

Suggested Citation

  • Kim, M.K. & Park, J.K. & Nam, Y.W., 2011. "Market-clearing for pricing system security based on voltage stability criteria," Energy, Elsevier, vol. 36(2), pages 1255-1264.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1255-1264
    DOI: 10.1016/j.energy.2010.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210006456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadegheih, A., 2009. "Optimization of network planning by the novel hybrid algorithms of intelligent optimization techniques," Energy, Elsevier, vol. 34(10), pages 1539-1551.
    2. Al-Muhawesh, Tareq A. & Qamber, Isa S., 2008. "The established mega watt linear programming-based optimal power flow model applied to the real power 56-bus system in eastern province of Saudi Arabia," Energy, Elsevier, vol. 33(1), pages 12-21.
    3. Amjady, N. & Aghaei, J. & Shayanfar, H.A., 2009. "Market clearing of joint energy and reserves auctions using augmented payment minimization," Energy, Elsevier, vol. 34(10), pages 1552-1559.
    4. Carraretto, Cristian & Lazzaretto, Andrea, 2004. "A dynamic approach for the optimal electricity dispatch in the deregulated market," Energy, Elsevier, vol. 29(12), pages 2273-2287.
    5. Vahidinasab, V. & Jadid, S., 2010. "Joint economic and emission dispatch in energy markets: A multiobjective mathematical programming approach," Energy, Elsevier, vol. 35(3), pages 1497-1504.
    6. Amjady, N. & Rabiee, A. & Shayanfar, H.A., 2010. "A stochastic framework for clearing of reactive power market," Energy, Elsevier, vol. 35(1), pages 239-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, H.Y. & Kim, M.K., 2017. "Optimal generation rescheduling for meshed AC/HIS grids with multi-terminal voltage source converter high voltage direct current and battery energy storage system," Energy, Elsevier, vol. 119(C), pages 309-321.
    2. Ahmed Al-Shafei & Hamidreza Zareipour & Yankai Cao, 2022. "High-Performance and Parallel Computing Techniques Review: Applications, Challenges and Potentials to Support Net-Zero Transition of Future Grids," Energies, MDPI, vol. 15(22), pages 1-58, November.
    3. Ho-Young Kim & Mun-Kyeom Kim & San Kim, 2017. "Multi-Objective Scheduling Optimization Based on a Modified Non-Dominated Sorting Genetic Algorithm-II in Voltage Source Converter−Multi-Terminal High Voltage DC Grid-Connected Offshore Wind Farms wit," Energies, MDPI, vol. 10(7), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    2. Pourakbari-Kasmaei, Mahdi & Rider, Marcos J. & Mantovani, José R.S., 2014. "An unequivocal normalization-based paradigm to solve dynamic economic and emission active-reactive OPF (optimal power flow)," Energy, Elsevier, vol. 73(C), pages 554-566.
    3. Partovi, Farzad & Nikzad, Mehdi & Mozafari, Babak & Ranjbar, Ali Mohamad, 2011. "A stochastic security approach to energy and spinning reserve scheduling considering demand response program," Energy, Elsevier, vol. 36(5), pages 3130-3137.
    4. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    5. Soares, J. & Silva, M. & Sousa, T. & Vale, Z. & Morais, H., 2012. "Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization," Energy, Elsevier, vol. 42(1), pages 466-476.
    6. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    7. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    8. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Roosta, Alireza & Malekpour, Ahmad Reza & Zare, Mohsen, 2012. "Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method," Energy, Elsevier, vol. 37(1), pages 322-335.
    9. Jagdish Chand Bansal & Shimpi Singh Jadon & Ritu Tiwari & Deep Kiran & B. K. Panigrahi, 2017. "Optimal power flow using artificial bee colony algorithm with global and local neighborhoods," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 2158-2169, December.
    10. Sadegheih, A., 2010. "A novel formulation of carbon emissions costs for optimal design configuration of system transmission planning," Renewable Energy, Elsevier, vol. 35(5), pages 1091-1097.
    11. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    12. Bagherzade, Shima & Hooshmand, Rahmat-Allah & Firouzmakan, Pouya & Khodabakhshian, Amin & Gholipour, Mehdi, 2019. "Stochastic parking energy pricing strategies to promote competition arena in an intelligent parking," Energy, Elsevier, vol. 188(C).
    13. Sadegheih, A., 2009. "Optimization of network planning by the novel hybrid algorithms of intelligent optimization techniques," Energy, Elsevier, vol. 34(10), pages 1539-1551.
    14. Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
    15. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    16. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    17. Samimi, Abouzar & Nikzad, Mehdi & Siano, Pierluigi, 2017. "Scenario-based stochastic framework for coupled active and reactive power market in smart distribution systems with demand response programs," Renewable Energy, Elsevier, vol. 109(C), pages 22-40.
    18. SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).
    19. Saraswat, Amit & Saini, Ashish & Saxena, Ajay Kumar, 2013. "A novel multi-zone reactive power market settlement model: A pareto-optimization approach," Energy, Elsevier, vol. 51(C), pages 85-100.
    20. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1255-1264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.