Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2013.04.066
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Vahidinasab, V. & Jadid, S., 2010. "Joint economic and emission dispatch in energy markets: A multiobjective mathematical programming approach," Energy, Elsevier, vol. 35(3), pages 1497-1504.
- Makkonen, Simo & Lahdelma, Risto, 2006. "Non-convex power plant modelling in energy optimisation," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1113-1126, June.
- Subbaraj, P. & Rengaraj, R. & Salivahanan, S., 2009. "Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm," Applied Energy, Elsevier, vol. 86(6), pages 915-921, June.
- Fesanghary, M. & Ardehali, M.M., 2009. "A novel meta-heuristic optimization methodology for solving various types of economic dispatch problem," Energy, Elsevier, vol. 34(6), pages 757-766.
- Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- de Athayde Costa e Silva, Marsil & Klein, Carlos Eduardo & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2013. "Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem," Energy, Elsevier, vol. 53(C), pages 14-21.
- Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
- Niknam, Taher & Mojarrad, Hasan Doagou & Meymand, Hamed Zeinoddini & Firouzi, Bahman Bahmani, 2011. "A new honey bee mating optimization algorithm for non-smooth economic dispatch," Energy, Elsevier, vol. 36(2), pages 896-908.
- Zhou, Tianmin & Chen, Jiamin & Xu, Xuancong & Ou, Zuhong & Yin, Hao & Luo, Jianqiang & Meng, Anbo, 2023. "A novel multi-agent based crisscross algorithm with hybrid neighboring topology for combined heat and power economic dispatch," Applied Energy, Elsevier, vol. 342(C).
- Xiong, Guojiang & Shi, Dongyuan & Duan, Xianzhong, 2013. "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems," Applied Energy, Elsevier, vol. 111(C), pages 801-811.
- Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
- Secui, Dinu Calin, 2015. "The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch," Energy, Elsevier, vol. 93(P2), pages 2518-2545.
- Vinay Kumar Jadoun & G. Rahul Prashanth & Siddharth Suhas Joshi & Anshul Agarwal & Hasmat Malik & Majed A. Alotaibi & Abdulaziz Almutairi, 2021. "Optimal Scheduling of Non-Convex Cogeneration Units Using Exponentially Varying Whale Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-30, February.
- Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
- Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
- Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
- Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
- Subbaraj, P. & Rengaraj, R. & Salivahanan, S., 2009. "Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm," Applied Energy, Elsevier, vol. 86(6), pages 915-921, June.
- Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
- Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Roosta, Alireza & Malekpour, Ahmad Reza & Zare, Mohsen, 2012. "Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method," Energy, Elsevier, vol. 37(1), pages 322-335.
- Rong, Aiying & Lahdelma, Risto, 2007. "CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1874-1895, February.
- Niu, Qun & Zhang, Hongyun & Li, Kang & Irwin, George W., 2014. "An efficient harmony search with new pitch adjustment for dynamic economic dispatch," Energy, Elsevier, vol. 65(C), pages 25-43.
- Bagherzade, Shima & Hooshmand, Rahmat-Allah & Firouzmakan, Pouya & Khodabakhshian, Amin & Gholipour, Mehdi, 2019. "Stochastic parking energy pricing strategies to promote competition arena in an intelligent parking," Energy, Elsevier, vol. 188(C).
- Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
- Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
More about this item
Keywords
Combined heat and power; Economic dispatch; Multi-objective line-up competition algorithm; Power transmission loss; Emission reduction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:56:y:2013:i:c:p:135-143. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.