IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i9p3593-3602.html
   My bibliography  Save this article

Optimum turbine-site matching

Author

Listed:
  • Albadi, M.H.
  • El-Saadany, E.F.

Abstract

This paper presents a new formulation for the turbine-site matching problem, based on wind speed characteristics at any site, the power performance curve parameters of any pitch-regulated wind turbine, as well as turbine size and tower height. Wind speed at any site is characterized by the 2-parameter Weibull distribution function and the value of ground friction coefficient (α). The power performance curve is characterized by the cut-in, rated, and cut-out speeds and the rated power. The new Turbine-Site Matching Index (TSMI) is derived based on a generic formulation for Capacity Factor (CF), which includes the effect of turbine tower height (h). Using the CF as a basis for turbine-site matching produces results that are biased towards higher towers with no considerations for the associated costs. The proposed TSMI includes the effects of turbine size and tower height on the Initial Capital Cost (ICC) of wind turbines. The effectiveness and the applicability of the proposed TSMI are illustrated using five case studies. In general, for each turbine, there exists an optimal tower height, at which the value of the TSMI is at its maximum. The results reveal that higher tower heights are not always desirable for optimality.

Suggested Citation

  • Albadi, M.H. & El-Saadany, E.F., 2010. "Optimum turbine-site matching," Energy, Elsevier, vol. 35(9), pages 3593-3602.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3593-3602
    DOI: 10.1016/j.energy.2010.04.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210002574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.04.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abed, K.A. & El-Mallah, A.A., 1997. "Capacity factor of wind turbines," Energy, Elsevier, vol. 22(5), pages 487-491.
    2. Himri, Y. & Rehman, S. & Draoui, B. & Himri, S., 2008. "Wind power potential assessment for three locations in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2495-2504, December.
    3. Bardi, Ugo, 2009. "Peak oil: The four stages of a new idea," Energy, Elsevier, vol. 34(3), pages 323-326.
    4. Albadi, M.H. & El-Saadany, E.F. & Albadi, H.A., 2009. "Wind to power a new city in Oman," Energy, Elsevier, vol. 34(10), pages 1579-1586.
    5. Meng, Q.Y. & Bentley, R.W., 2008. "Global oil peaking: Responding to the case for ‘abundant supplies of oil’," Energy, Elsevier, vol. 33(8), pages 1179-1184.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irwanto, M. & Gomesh, N. & Mamat, M.R. & Yusoff, Y.M., 2014. "Assessment of wind power generation potential in Perlis, Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 296-308.
    2. Sun, Haiying & Yang, Hongxing, 2023. "Wind farm layout and hub height optimization with a novel wake model," Applied Energy, Elsevier, vol. 348(C).
    3. Song, Dongran & Yang, Yinggang & Zheng, Songyue & Tang, Weiyi & Yang, Jian & Su, Mei & Yang, Xuebing & Joo, Young Hoon, 2019. "Capacity factor estimation of variable-speed wind turbines considering the coupled influence of the QN-curve and the air density," Energy, Elsevier, vol. 183(C), pages 1049-1060.
    4. Gu, Huajie & Wang, Jun, 2013. "Irregular-shape wind farm micro-siting optimization," Energy, Elsevier, vol. 57(C), pages 535-544.
    5. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    6. Chen, K. & Song, M.X. & Zhang, X. & Wang, S.F., 2016. "Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm," Renewable Energy, Elsevier, vol. 96(PA), pages 676-686.
    7. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    8. A Albani & MZ Ibrahim & KH Yong & ZM Yusop & MA Jusoh & AR Ridzuan, 2021. "The wind energy potential in Kudat Malaysia by considering the levelized cost of energy for combined wind turbine capacities," Energy & Environment, , vol. 32(7), pages 1149-1169, November.
    9. Aliari, Yashar & Haghani, Ali, 2016. "Planning for integration of wind power capacity in power generation using stochastic optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 907-919.
    10. Chen, Jincheng & Wang, Feng & Stelson, Kim A., 2018. "A mathematical approach to minimizing the cost of energy for large utility wind turbines," Applied Energy, Elsevier, vol. 228(C), pages 1413-1422.
    11. Herrero-Novoa, Cristina & Pérez, Isidro A. & Sánchez, M. Luisa & García, Ma Ángeles & Pardo, Nuria & Fernández-Duque, Beatriz, 2017. "Wind speed description and power density in northern Spain," Energy, Elsevier, vol. 138(C), pages 967-976.
    12. Saheb Koussa, D. & Koussa, M. & Hadji, S., 2016. "Assessment of various WTG (wind turbine generators) production in different Algerian's climatic zones," Energy, Elsevier, vol. 96(C), pages 449-460.
    13. Song, M.X. & Chen, K. & Zhang, X. & Wang, J., 2015. "The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain," Energy, Elsevier, vol. 80(C), pages 567-574.
    14. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    15. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    16. Shaban Boloukat, Mohammad Hadi & Akbari Foroud, Asghar, 2016. "Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming," Energy, Elsevier, vol. 113(C), pages 776-787.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    2. Hamouda, Yasmina Abdellatif, 2012. "Wind energy in Egypt: Economic feasibility for Cairo," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3312-3319.
    3. Chauhan, Bhupendra Singh & Kumar, Naveen & Pal, Shyam Sunder & Du Jun, Yong, 2011. "Experimental studies on fumigation of ethanol in a small capacity Diesel engine," Energy, Elsevier, vol. 36(2), pages 1030-1038.
    4. Chapman, Ian, 2014. "The end of Peak Oil? Why this topic is still relevant despite recent denials," Energy Policy, Elsevier, vol. 64(C), pages 93-101.
    5. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    6. Albadi, M.H. & El-Saadany, E.F. & Albadi, H.A., 2009. "Wind to power a new city in Oman," Energy, Elsevier, vol. 34(10), pages 1579-1586.
    7. Scholtens, Bert & Wagenaar, Robert, 2011. "Revisions of international firms’ energy reserves and the reaction of the stock market," Energy, Elsevier, vol. 36(5), pages 3541-3546.
    8. Song, Mengxuan & Wen, Yi & Duan, Bin & Wang, Jun & Gong, Qi, 2017. "Micro-siting optimization of a wind farm built in multiple phases," Energy, Elsevier, vol. 137(C), pages 95-103.
    9. Sliz-Szkliniarz, Beata & Vogt, Joachim, 2011. "GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko-Pomorskie Voivodeship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1696-1707, April.
    10. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    11. AL-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Alawi, Saleh, 2010. "Assessment of wind energy potential locations in Oman using data from existing weather stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1428-1436, June.
    12. Khraiwish Dalabeeh, Ali S., 2017. "Techno-economic analysis of wind power generation for selected locations in Jordan," Renewable Energy, Elsevier, vol. 101(C), pages 1369-1378.
    13. de Medeiros, Armando Lúcio Ramos & Araújo, Alex Maurício & de Oliveira Filho, Oyama Douglas Queiroz & Rohatgi, Janardan & dos Santos, Maurílio José, 2015. "Analysis of design parameters of large-sized wind turbines by non-dimensional model," Energy, Elsevier, vol. 93(P1), pages 1146-1154.
    14. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
    15. Wang, Qiang, 2011. "Time for commercializing non-food biofuel in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 621-629, January.
    16. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    17. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    18. Christina Ortega & Amin Younes & Mark Severy & Charles Chamberlin & Arne Jacobson, 2020. "Resource and Load Compatibility Assessment of Wind Energy Offshore of Humboldt County, California," Energies, MDPI, vol. 13(21), pages 1-27, October.
    19. Ibrahim, Adnan & Othman, Mohd Yusof & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2011. "Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 352-365, January.
    20. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3593-3602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.