Peak oil: The four stages of a new idea
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2008.08.015
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Robert K. Kaufmann & Cutler J. Cleveland, 2001.
"Oil Production in the Lower 48 States: Economic, Geological, and Institutional Determinants,"
The Energy Journal, , vol. 22(1), pages 27-49, January.
- Robert K. Kaufmann & Cutler J. Cleveland, 2001. "Oil Production in the Lower 48 States: Economic, Geological, and Institutional Determinants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 27-49.
- Lund, P.D., 2007. "Upfront resource requirements for large-scale exploitation schemes of new renewable technologies," Renewable Energy, Elsevier, vol. 32(3), pages 442-458.
- Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
- Renato Guseo & Alessandra Valle, 2005. "Oil and gas depletion: Diffusion models and forecasting under strategic intervention," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(3), pages 375-387, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fizaine, Florian & Court, Victor, 2015.
"Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI,"
Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
- Florian Fizaine Fizaine & Victor Court, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Post-Print hal-01170989, HAL.
- Florian Fizaine & Victor Court, 2014.
"Energy transition toward renewables and metal depletion: an approach through the EROI concept,"
Working Papers
1407, Chaire Economie du climat.
- Victor Court & Florian Fizaine, 2014. "Energy transition towards renewables and metal depletion: an approach through the EROI concept," Post-Print hal-01411803, HAL.
- Brandt, Adam R., 2010. "Review of mathematical models of future oil supply: Historical overview and synthesizing critique," Energy, Elsevier, vol. 35(9), pages 3958-3974.
- Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
- Joshua M. Pearce, 2012. "Limitations of Nuclear Power as a Sustainable Energy Source," Sustainability, MDPI, vol. 4(6), pages 1-15, June.
- Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
- Gil-Alana, Luis A. & Dadgar, Yadollah & Nazari, Rouhollah, 2020. "An analysis of the OPEC and non-OPEC position in the World Oil Market: A fractionally integrated approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
- Saule Baurzhan & Glenn P Jenkins, 2016. "An economic appraisal of solar versus combined cycle electricity generation for African countries that are capital constrained," Energy & Environment, , vol. 27(2), pages 241-256, March.
- Amor, Mourad Ben & Pineau, Pierre-Olivier & Gaudreault, Caroline & Samson, Réjean, 2011. "Electricity trade and GHG emissions: Assessment of Quebec's hydropower in the Northeastern American market (2006-2008)," Energy Policy, Elsevier, vol. 39(3), pages 1711-1721, March.
- Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
- Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
- Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
- Kolodzeij, Marek & Kaufmann, Robert.K., 2014. "Oil demand shocks reconsidered: A cointegrated vector autoregression," Energy Economics, Elsevier, vol. 41(C), pages 33-40.
- Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
- Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
- Smith, James L., 2012.
"On the portents of peak oil (and other indicators of resource scarcity),"
Energy Policy, Elsevier, vol. 44(C), pages 68-78.
- James L. Smith, 2010. "On The Portents of Peak Oil (And Other Indicators of Resource Scarcity)," Working Papers 1010, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
- Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
- Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
- Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
- Heetae Kim & Petter Holme, 2015. "Network Theory Integrated Life Cycle Assessment for an Electric Power System," Sustainability, MDPI, vol. 7(8), pages 1-15, August.
More about this item
Keywords
Peak oil; Hubbert's peak; Crude oil; Resource depletion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:3:p:323-326. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.