IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i5p1874-1883.html
   My bibliography  Save this article

A numerical investigation of a diffusion-absorption refrigeration cycle based on R124-DMAC mixture for solar cooling

Author

Listed:
  • Ben Ezzine, N.
  • Garma, R.
  • Bellagi, A.

Abstract

Research on new working fluid for uses in absorption systems has been continued. The feasibility of a solar driven DAR using the mixture R124/DMAC as working fluid is investigated by numerical simulation. The cycle is simulated for two cooling medium temperatures, 27°C and 35°C, and four driving heat temperatures in the range [90°C–180°C]. The performance characteristics of this system is analyzed parametrically by computer simulation for a design cooling capacity of 1kW. The results show that the system performance and the lowest (minimum) evaporation temperature reached are largely dependent upon the absorber efficiency and the driving temperature. It is shown that for solar applications this fluid mixture has a higher COP and may constitute an alternative to the conventional ammonia–water system.

Suggested Citation

  • Ben Ezzine, N. & Garma, R. & Bellagi, A., 2010. "A numerical investigation of a diffusion-absorption refrigeration cycle based on R124-DMAC mixture for solar cooling," Energy, Elsevier, vol. 35(5), pages 1874-1883.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:5:p:1874-1883
    DOI: 10.1016/j.energy.2009.12.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209005520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levy, A. & Jelinek, M. & Borde, I. & Ziegler, F., 2004. "Performance of an advanced absorption cycle with R125 and different absorbents," Energy, Elsevier, vol. 29(12), pages 2501-2515.
    2. Xu, Feng & Goswami, D.Yogi, 1999. "Thermodynamic properties of ammonia–water mixtures for power-cycle applications," Energy, Elsevier, vol. 24(6), pages 525-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taieb, Ahmed & Mejbri, Khalifa & Bellagi, Ahmed, 2016. "Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle," Energy, Elsevier, vol. 115(P1), pages 418-434.
    2. Gao, Yu & He, Guogeng & Chen, Peidong & Zhao, Xin & Cai, Dehua, 2019. "Energy and exergy analysis of an air-cooled waste heat-driven absorption refrigeration cycle using R290/oil as working fluid," Energy, Elsevier, vol. 173(C), pages 820-832.
    3. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    4. Freeman, J. & Markides, C.N., 2024. "A solar diffusion-absorption refrigeration system for off-grid cold-chain provision, Part II: System simulation and assessment of performance," Renewable Energy, Elsevier, vol. 230(C).
    5. Lee, Gawon & Choi, Hyung Won & Kang, Yong Tae, 2021. "Cycle performance analysis and experimental validation of a novel diffusion absorption refrigeration system using R600a/n-octane," Energy, Elsevier, vol. 217(C).
    6. Rodríguez-Muñoz, J.L. & Belman-Flores, J.M., 2014. "Review of diffusion–absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 145-153.
    7. Hong, D.L. & Chen, G.M. & Tang, L.M. & He, Y.J., 2011. "Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle," Energy, Elsevier, vol. 36(1), pages 94-98.
    8. Kim, Gahyeong & Choi, Hyung Won & Lee, Gawon & Lee, Jang Seok & Kang, Yong Tae, 2020. "Experimental study on diffusion absorption refrigeration systems with low GWP refrigerants," Energy, Elsevier, vol. 201(C).
    9. Baby-Jean Robert Mungyeko Bisulandu & Rami Mansouri & Adrian Ilinca, 2023. "Diffusion Absorption Refrigeration Systems: An Overview of Thermal Mechanisms and Models," Energies, MDPI, vol. 16(9), pages 1-36, April.
    10. Fong, K.F. & Lee, C.K., 2014. "Performance advancement of solar air-conditioning through integrated system design for building," Energy, Elsevier, vol. 73(C), pages 987-996.
    11. Yıldız, Abdullah & Ersöz, Mustafa Ali, 2013. "Energy and exergy analyses of the diffusion absorption refrigeration system," Energy, Elsevier, vol. 60(C), pages 407-415.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian Agnew & Sara Walker & Bobo Ng & Ivan C. K. Tam, 2015. "Finite Time Analysis of a Tri-Generation Cycle," Energies, MDPI, vol. 8(6), pages 1-15, June.
    2. Le Lostec, Brice & Galanis, Nicolas & Baribeault, Jean & Millette, Jocelyn, 2008. "Wood chip drying with an absorption heat pump," Energy, Elsevier, vol. 33(3), pages 500-512.
    3. Wang, J.L. & Zhao, L. & Wang, X.D., 2012. "An experimental study on the recuperative low temperature solar Rankine cycle using R245fa," Applied Energy, Elsevier, vol. 94(C), pages 34-40.
    4. Sochard, Sabine & Castillo Garcia, Lorenzo & Serra, Sylvain & Vitupier, Yann & Reneaume, Jean-Michel, 2017. "Modelling a solar absorption chiller using positive flash to estimate the physical state of streams and theoretical plate concept for the generator," Renewable Energy, Elsevier, vol. 109(C), pages 121-134.
    5. Kyoung Hoon Kim & Chul Ho Han & Hyung Jong Ko, 2018. "Comparative Thermodynamic Analysis of Kalina and Kalina Flash Cycles for Utilizing Low-Grade Heat Sources," Energies, MDPI, vol. 11(12), pages 1-14, November.
    6. Moradpoor, Iraj & Ebrahimi, Masood, 2019. "Thermo-environ analyses of a novel trigeneration cycle based on clean technologies of molten carbonate fuel cell, stirling engine and Kalina cycle," Energy, Elsevier, vol. 185(C), pages 1005-1016.
    7. Battisti, Felipe G. & Cardemil, José M. & da Silva, Alexandre K., 2016. "A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid," Energy, Elsevier, vol. 112(C), pages 908-916.
    8. Bahlouli, K. & Khoshbakhti Saray, R. & Sarabchi, N., 2015. "Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 672-684.
    9. Privat, Romain & Qian, Jun-Wei & Alonso, Dominique & Jaubert, Jean-Noël, 2013. "Quest for an efficient binary working mixture for an absorption-demixing heat transformer," Energy, Elsevier, vol. 55(C), pages 594-609.
    10. Peng, Shuo & Hong, Hui & Jin, Hongguang & Wang, Zhifeng, 2012. "An integrated solar thermal power system using intercooled gas turbine and Kalina cycle," Energy, Elsevier, vol. 44(1), pages 732-740.
    11. Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
    12. Kim, Kyoung Hoon & Ko, Hyung Jong & Kim, Kyoungjin, 2014. "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia–water based power cycles," Applied Energy, Elsevier, vol. 113(C), pages 970-981.
    13. Padilla, Ricardo Vasquez & Demirkaya, Gökmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2010. "Analysis of power and cooling cogeneration using ammonia-water mixture," Energy, Elsevier, vol. 35(12), pages 4649-4657.
    14. Vijayaraghavan, S. & Goswami, D.Y., 2006. "A combined power and cooling cycle modified to improve resource utilization efficiency using a distillation stage," Energy, Elsevier, vol. 31(8), pages 1177-1196.
    15. Saffari, Hamid & Sadeghi, Sadegh & Khoshzat, Mohsen & Mehregan, Pooyan, 2016. "Thermodynamic analysis and optimization of a geothermal Kalina cycle system using Artificial Bee Colony algorithm," Renewable Energy, Elsevier, vol. 89(C), pages 154-167.
    16. Kyoung Hoon Kim, 2019. "Thermodynamic Analysis of Kalina Based Power and Cooling Cogeneration Cycle Employed Once Through Configuration," Energies, MDPI, vol. 12(8), pages 1-17, April.
    17. Zhang, Xinxin & He, Maogang & Zhang, Ying, 2012. "A review of research on the Kalina cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5309-5318.
    18. Orian, G. & Jelinek, M. & Levy, A., 2010. "Flow boiling of binary solution in horizontal tube," Energy, Elsevier, vol. 35(1), pages 35-44.
    19. Xu, Feng & Yogi Goswami, D & S. Bhagwat, Sunil, 2000. "A combined power/cooling cycle," Energy, Elsevier, vol. 25(3), pages 233-246.
    20. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2017. "Investigation on performance of an integrated SOFC-GE-KC power generation system using gaseous fuel from biomass gasification," Renewable Energy, Elsevier, vol. 107(C), pages 448-461.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:5:p:1874-1883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.