IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v60y2013icp407-415.html
   My bibliography  Save this article

Energy and exergy analyses of the diffusion absorption refrigeration system

Author

Listed:
  • Yıldız, Abdullah
  • Ersöz, Mustafa Ali

Abstract

This paper describes the thermodynamic analyses of a DAR (diffusion absorption refrigeration) cycle. The experimental apparatus is set up to an ammonia–water DAR cycle with helium as the auxiliary inert gas. A thermodynamic model including mass, energy and exergy balance equations are presented for each component of the DAR cycle and this model is then validated by comparison with experimental data. In the thermodynamic analyses, energy and exergy losses for each component of the system are quantified and illustrated. The systems' energy and exergy losses and efficiencies are investigated. The highest energy and exergy losses occur in the solution heat exchanger. The highest energy losses in the experimental and theoretical analyses are found 25.7090 W and 25.4788 W respectively, whereas those losses as to exergy are calculated 13.7933 W and 13.9976 W. Although the values of energy efficiencies obtained from both the model and experimental studies are calculated as 0.1858, those values, in terms of exergy efficiencies are found 0.0260 and 0.0356.

Suggested Citation

  • Yıldız, Abdullah & Ersöz, Mustafa Ali, 2013. "Energy and exergy analyses of the diffusion absorption refrigeration system," Energy, Elsevier, vol. 60(C), pages 407-415.
  • Handle: RePEc:eee:energy:v:60:y:2013:i:c:p:407-415
    DOI: 10.1016/j.energy.2013.07.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213006683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.07.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben Ezzine, N. & Garma, R. & Bourouis, M. & Bellagi, A., 2010. "Experimental studies on bubble pump operated diffusion absorption machine based on light hydrocarbons for solar cooling," Renewable Energy, Elsevier, vol. 35(2), pages 464-470.
    2. Ben Ezzine, N. & Garma, R. & Bellagi, A., 2010. "A numerical investigation of a diffusion-absorption refrigeration cycle based on R124-DMAC mixture for solar cooling," Energy, Elsevier, vol. 35(5), pages 1874-1883.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shengnan & Li, Yunhua & Li, Yun-Ze & Peng, Xing & Mao, Yufeng, 2018. "Exergy based parametric analysis of a cooling and power co-generation system for the life support system of extravehicular spacesuits," Renewable Energy, Elsevier, vol. 115(C), pages 1209-1219.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Gawon & Choi, Hyung Won & Kang, Yong Tae, 2021. "Cycle performance analysis and experimental validation of a novel diffusion absorption refrigeration system using R600a/n-octane," Energy, Elsevier, vol. 217(C).
    2. Kim, Gahyeong & Choi, Hyung Won & Lee, Gawon & Lee, Jang Seok & Kang, Yong Tae, 2020. "Experimental study on diffusion absorption refrigeration systems with low GWP refrigerants," Energy, Elsevier, vol. 201(C).
    3. Taieb, Ahmed & Mejbri, Khalifa & Bellagi, Ahmed, 2016. "Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle," Energy, Elsevier, vol. 115(P1), pages 418-434.
    4. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    5. Rodríguez-Muñoz, J.L. & Belman-Flores, J.M., 2014. "Review of diffusion–absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 145-153.
    6. Baby-Jean Robert Mungyeko Bisulandu & Rami Mansouri & Adrian Ilinca, 2023. "Diffusion Absorption Refrigeration Systems: An Overview of Thermal Mechanisms and Models," Energies, MDPI, vol. 16(9), pages 1-36, April.
    7. Hong, D.L. & Chen, G.M. & Tang, L.M. & He, Y.J., 2011. "Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle," Energy, Elsevier, vol. 36(1), pages 94-98.
    8. Lee, Jin Ki & Lee, Kyoung-Ryul & Kang, Yong Tae, 2014. "Development of binary nanoemulsion to apply for diffusion absorption refrigerator as a new refrigerant," Energy, Elsevier, vol. 78(C), pages 693-700.
    9. Gao, Yu & He, Guogeng & Chen, Peidong & Zhao, Xin & Cai, Dehua, 2019. "Energy and exergy analysis of an air-cooled waste heat-driven absorption refrigeration cycle using R290/oil as working fluid," Energy, Elsevier, vol. 173(C), pages 820-832.
    10. Fong, K.F. & Lee, C.K., 2014. "Performance advancement of solar air-conditioning through integrated system design for building," Energy, Elsevier, vol. 73(C), pages 987-996.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:60:y:2013:i:c:p:407-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.