IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v109y2017icp121-134.html
   My bibliography  Save this article

Modelling a solar absorption chiller using positive flash to estimate the physical state of streams and theoretical plate concept for the generator

Author

Listed:
  • Sochard, Sabine
  • Castillo Garcia, Lorenzo
  • Serra, Sylvain
  • Vitupier, Yann
  • Reneaume, Jean-Michel

Abstract

In this paper a general model for the steady state simulation of a solar absorption chiller is proposed. The novelty of this model is to calculate the physical state of all the streams rather than fix them (especially at the outlet of the condenser and evaporator). The thermodynamic properties of the mixture can be calculated by suitable predictive thermodynamic models, hence the working pair can be changed easily. Using this thermodynamic model, a general Positive Flash model is able to describe all the possible states (sub-cooled, super-heated, biphasic) of the various streams which are all considered as multicomponent mixtures. In the positive flash the same set of governing equations is valid for all phase regions. Another originality of the present study is that the generator is modelled as a distillation column, using the theoretical plate concept: MESH equations (Mass balance, Equilibrium, Summation, Heat balance) were written for each stage. Despite the modular structure of the software, a global solution strategy was implemented, using a Newton-Raphson method. This model is successfully compared to an example in the literature which deals with a GAX (Generator-Absorber heat eXchange) configuration absorption chiller using ammonia/water as the working pair.

Suggested Citation

  • Sochard, Sabine & Castillo Garcia, Lorenzo & Serra, Sylvain & Vitupier, Yann & Reneaume, Jean-Michel, 2017. "Modelling a solar absorption chiller using positive flash to estimate the physical state of streams and theoretical plate concept for the generator," Renewable Energy, Elsevier, vol. 109(C), pages 121-134.
  • Handle: RePEc:eee:renene:v:109:y:2017:i:c:p:121-134
    DOI: 10.1016/j.renene.2017.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117301969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jawahar, C.P. & Saravanan, R., 2010. "Generator absorber heat exchange based absorption cycle--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2372-2382, October.
    2. Lazrak, Amine & Boudehenn, François & Bonnot, Sylvain & Fraisse, Gilles & Leconte, Antoine & Papillon, Philippe & Souyri, Bernard, 2016. "Development of a dynamic artificial neural network model of an absorption chiller and its experimental validation," Renewable Energy, Elsevier, vol. 86(C), pages 1009-1022.
    3. Xu, Feng & Goswami, D.Yogi, 1999. "Thermodynamic properties of ammonia–water mixtures for power-cycle applications," Energy, Elsevier, vol. 24(6), pages 525-536.
    4. Yari, Mortaza & Zarin, Arash & Mahmoudi, S.M.S., 2011. "Energy and exergy analyses of GAX and GAX hybrid absorption refrigeration cycles," Renewable Energy, Elsevier, vol. 36(7), pages 2011-2020.
    5. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    6. Le Lostec, Brice & Galanis, Nicolas & Millette, Jocelyn, 2013. "Simulation of an ammonia–water absorption chiller," Renewable Energy, Elsevier, vol. 60(C), pages 269-283.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    2. Yari, Mortaza & Mehr, A.S. & Mahmoudi, S.M.S., 2013. "Thermodynamic analysis and optimization of a novel dual-evaporator system powered by electrical and solar energy sources," Energy, Elsevier, vol. 61(C), pages 646-656.
    3. Mendiburu, Andrés Z. & Roberts, Justo J. & Rodrigues, Letícia Jenisch & Verma, Sujit Kr, 2023. "Thermodynamic modelling for absorption refrigeration cycles powered by solar energy and a case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 266(C).
    4. Gong, Sunyoung & Goni Boulama, Kiari, 2014. "Parametric study of an absorption refrigeration machine using advanced exergy analysis," Energy, Elsevier, vol. 76(C), pages 453-467.
    5. Ayou, Dereje S. & Bruno, Joan Carles & Saravanan, Rajagopal & Coronas, Alberto, 2013. "An overview of combined absorption power and cooling cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 728-748.
    6. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    7. Desy Agung & Gabriel Garcia Genta & Arnas Lubis & M. Idrus Alhamid & Nasruddin Nasruddin, 2024. "Development of Key Components for 5 kW Ammonia–Water Absorption Chiller with Air-Cooled Absorber and Condenser," Energies, MDPI, vol. 17(17), pages 1-20, September.
    8. Moradpoor, Iraj & Ebrahimi, Masood, 2019. "Thermo-environ analyses of a novel trigeneration cycle based on clean technologies of molten carbonate fuel cell, stirling engine and Kalina cycle," Energy, Elsevier, vol. 185(C), pages 1005-1016.
    9. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    10. Chen, X. & Wang, R.Z. & Du, S., 2017. "Heat integration of ammonia-water absorption refrigeration system through heat-exchanger network analysis," Energy, Elsevier, vol. 141(C), pages 1585-1599.
    11. Ben Ezzine, N. & Garma, R. & Bellagi, A., 2010. "A numerical investigation of a diffusion-absorption refrigeration cycle based on R124-DMAC mixture for solar cooling," Energy, Elsevier, vol. 35(5), pages 1874-1883.
    12. Bahlouli, K. & Khoshbakhti Saray, R. & Sarabchi, N., 2015. "Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 672-684.
    13. Peng, Shuo & Hong, Hui & Jin, Hongguang & Wang, Zhifeng, 2012. "An integrated solar thermal power system using intercooled gas turbine and Kalina cycle," Energy, Elsevier, vol. 44(1), pages 732-740.
    14. Jayasekara, Saliya & Halgamuge, Saman K., 2014. "A combined effect absorption chiller for enhanced performance of combined cooling heating and power systems," Applied Energy, Elsevier, vol. 127(C), pages 239-248.
    15. Menegon, Diego & Persson, Tomas & Haberl, Robert & Bales, Chris & Haller, Michel, 2020. "Direct characterisation of the annual performance of solar thermal and heat pump systems using a six-day whole system test," Renewable Energy, Elsevier, vol. 146(C), pages 1337-1353.
    16. Tomasz Halon & Ewa Pelinska-Olko & Malgorzata Szyc & Bartosz Zajaczkowski, 2019. "Predicting Performance of a District Heat Powered Adsorption Chiller by Means of an Artificial Neural Network," Energies, MDPI, vol. 12(17), pages 1-11, August.
    17. Wang, Jian & Wu, Wei & Shi, Wenxing & Li, Xianting & Wang, Baolong, 2019. "Experimental investigation on NH3–H2O generator-absorber heat exchange (GAX) absorption heat pump," Energy, Elsevier, vol. 185(C), pages 337-349.
    18. Xia, Xiaohua & Zhang, Jiangfeng, 2013. "Mathematical description for the measurement and verification of energy efficiency improvement," Applied Energy, Elsevier, vol. 111(C), pages 247-256.
    19. Du, S. & Wang, R.Z., 2019. "A unified single stage ammonia-water absorption system configuration with producing best thermal efficiencies for freezing, air-conditioning and space heating applications," Energy, Elsevier, vol. 174(C), pages 1039-1048.
    20. Jung, Chung Woo & An, Seung Sun & Kang, Yong Tae, 2014. "Thermal performance estimation of ammonia-water plate bubble absorbers for compression/absorption hybrid heat pump application," Energy, Elsevier, vol. 75(C), pages 371-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:109:y:2017:i:c:p:121-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.