The influence of economic parameters on the optimal values of the design variables of a combined cycle plant
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2009.07.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Franco, Alessandro & Casarosa, Claudio, 2004. "Thermoeconomic evaluation of the feasibility of highly efficient combined cycle power plants," Energy, Elsevier, vol. 29(12), pages 1963-1982.
- Toffolo, A. & Lazzaretto, A., 2002. "Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design," Energy, Elsevier, vol. 27(6), pages 549-567.
- Franco, Alessandro & Giannini, Nicola, 2006. "A general method for the optimum design of heat recovery steam generators," Energy, Elsevier, vol. 31(15), pages 3342-3361.
- Casarosa, C. & Donatini, F. & Franco, A., 2004. "Thermoeconomic optimization of heat recovery steam generators operating parameters for combined plants," Energy, Elsevier, vol. 29(3), pages 389-414.
- Möller, Björn Fredriksson & Assadi, Mohsen & Potts, Ian, 2006. "CO2-free power generation in combined cycles—Integration of post-combustion separation of carbon dioxide in the steam cycle," Energy, Elsevier, vol. 31(10), pages 1520-1532.
- Dimopoulos, George G. & Frangopoulos, Christos A., 2008. "Optimization of energy systems based on Evolutionary and Social metaphors," Energy, Elsevier, vol. 33(2), pages 171-179.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kotowicz, Janusz & Michalski, Sebastian, 2015. "Influence of four-end HTM (high temperature membrane) parameters on the thermodynamic and economic characteristics of a supercritical power plant," Energy, Elsevier, vol. 81(C), pages 662-673.
- Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
- Kotowicz, Janusz & Bartela, Łukasz, 2012. "Optimisation of the connection of membrane CCS installation with a supercritical coal-fired power plant," Energy, Elsevier, vol. 38(1), pages 118-127.
- Kotowicz, Janusz & Bartela, Łukasz, 2011. "The influence of the legal and economical environment and the profile of activities on the optimal design features of a natural-gas-fired combined heat and power plant," Energy, Elsevier, vol. 36(1), pages 328-338.
- Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2020. "Thermodynamic analysis and optimization of an oxy-combustion combined cycle power plant based on a membrane reactor equipped with a high-temperature ion transport membrane ITM," Energy, Elsevier, vol. 205(C).
- Carcasci, Carlo & Cosi, Lorenzo & Ferraro, Riccardo & Pacifici, Beniamino, 2017. "Effect of a real steam turbine on thermoeconomic analysis of combined cycle power plants," Energy, Elsevier, vol. 138(C), pages 32-47.
- Carapellucci, Roberto & Giordano, Lorena, 2013. "A comparison between exergetic and economic criteria for optimizing the heat recovery steam generators of gas-steam power plants," Energy, Elsevier, vol. 58(C), pages 458-472.
- Skorek-Osikowska, Anna & Bartela, Łukasz & Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz & Remiorz, Leszek, 2014. "The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity an," Energy, Elsevier, vol. 67(C), pages 328-340.
- Janusz-Szymańska, Katarzyna & Dryjańska, Aleksandra, 2015. "Possibilities for improving the thermodynamic and economic characteristics of an oxy-type power plant with a cryogenic air separation unit," Energy, Elsevier, vol. 85(C), pages 45-61.
- Kotowicz, Janusz & Brzęczek, Mateusz & Job, Marcin, 2018. "The thermodynamic and economic characteristics of the modern combined cycle power plant with gas turbine steam cooling," Energy, Elsevier, vol. 164(C), pages 359-376.
- Manassaldi, Juan I. & Mussati, Sergio F. & Scenna, Nicolás J., 2011. "Optimal synthesis and design of Heat Recovery Steam Generation (HRSG) via mathematical programming," Energy, Elsevier, vol. 36(1), pages 475-485.
- Katulić, Stjepko & Čehil, Mislav & Schneider, Daniel Rolph, 2018. "Thermodynamic efficiency improvement of combined cycle power plant's bottom cycle based on organic working fluids," Energy, Elsevier, vol. 147(C), pages 36-50.
- Nadir, Mahmoud & Ghenaiet, Adel, 2015. "Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures," Energy, Elsevier, vol. 86(C), pages 685-695.
- Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2015. "The characteristics of ultramodern combined cycle power plants," Energy, Elsevier, vol. 92(P2), pages 197-211.
- Ryszard Bartnik & Waldemar Skomudek & Zbigniew Buryn & Anna Hnydiuk-Stefan & Aleksandra Otawa, 2018. "Methodology and Continuous Time Mathematical Model to Select Optimum Power of Gas Turbine Set for Dual-Fuel Gas-Steam Combined Heat and Power Plant in Parallel System," Energies, MDPI, vol. 11(7), pages 1-22, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bassily, A.M., 2007. "Modeling, numerical optimization, and irreversibility reduction of a triple-pressure reheat combined cycle," Energy, Elsevier, vol. 32(5), pages 778-794.
- Bassily, A.M., 2008. "Enhancing the efficiency and power of the triple-pressure reheat combined cycle by means of gas reheat, gas recuperation, and reduction of the irreversibility in the heat recovery steam generator," Applied Energy, Elsevier, vol. 85(12), pages 1141-1162, December.
- Manassaldi, Juan I. & Mussati, Sergio F. & Scenna, Nicolás J., 2011. "Optimal synthesis and design of Heat Recovery Steam Generation (HRSG) via mathematical programming," Energy, Elsevier, vol. 36(1), pages 475-485.
- Bracco, Stefano & Siri, Silvia, 2010. "Exergetic optimization of single level combined gas–steam power plants considering different objective functions," Energy, Elsevier, vol. 35(12), pages 5365-5373.
- Teichgraeber, Holger & Brodrick, Philip G. & Brandt, Adam R., 2017. "Optimal design and operations of a flexible oxyfuel natural gas plant," Energy, Elsevier, vol. 141(C), pages 506-518.
- Mehrgoo, Morteza & Amidpour, Majid, 2017. "Constructal design and optimization of a dual pressure heat recovery steam generator," Energy, Elsevier, vol. 124(C), pages 87-99.
- Rezaie, Ali & Tsatsaronis, George & Hellwig, Udo, 2019. "Thermal design and optimization of a heat recovery steam generator in a combined-cycle power plant by applying a genetic algorithm," Energy, Elsevier, vol. 168(C), pages 346-357.
- Pires, Thiago S. & Cruz, Manuel E. & Colaço, Marcelo J., 2013. "Response surface method applied to the thermoeconomic optimization of a complex cogeneration system modeled in a process simulator," Energy, Elsevier, vol. 52(C), pages 44-54.
- Mazzetti, Marit J. & Hagen, Brede A.L. & Skaugen, Geir & Lindqvist, Karl & Lundberg, Steinar & Kristensen, Oddrun A., 2021. "Achieving 50% weight reduction of offshore steam bottoming cycles," Energy, Elsevier, vol. 230(C).
- Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
- Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
- Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
- Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
- Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
- Haddadzade Hendo, Armin & Sanaye, Sepehr, 2024. "Simultaneous economic and exergetic optimization of a municipal solid waste incineration plant for sustainable power generation," Energy, Elsevier, vol. 293(C).
- Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari, 2017. "Conceptual and basic design of a novel integrated cogeneration power plant energy system," Energy, Elsevier, vol. 127(C), pages 516-533.
- Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
- Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
- Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
- Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
More about this item
Keywords
Combined cycle plant; Fuel price; Optimisation; Genetic algorithms;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:911-919. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.