IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i1p28-34.html
   My bibliography  Save this article

China's energy consumption: A perspective from Divisia aggregation approach

Author

Listed:
  • Liao, Hua
  • Wei, Yi-Ming

Abstract

China's total energy consumption, according to the official data, decreased impressively during 1997–1998 and increased sharply during 2003–2007, which in turn resulted in energy intensity fluctuation. Many literatures explained this “unusual phenomenon” from the perspectives of technical change, economic structure shifting and statistical data quality. They measured aggregate energy in thermal units by using linear summation approaches. In this paper, from the perspectives of heterogeneity and imperfect substitutability among diverse energy types, we further examine China's aggregate energy consumption by using Divisia (Sato-Vartia) approach. The results show that China's aggregate energy consumption and intensity fluctuated slightly less than values calculated by using conventional linear approaches, and the “unusual phenomenon” is partly explained. It also implies that China's energy intensity changes in 2006–2007 are slightly more optimistic than those officially reported, and the official communiqué of provincial energy intensity reduction achievements are partly bias. Some provincial achievement are underestimated or overestimated on some provinces. Our empirical results are also helpful to further research, such as energy–economic modeling, energy price elasticity, and elasticity of substitution among capital–labor–energy–material (KLEM). The difficulties or defects when using Divisia approach are also discussed in this paper.

Suggested Citation

  • Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:1:p:28-34
    DOI: 10.1016/j.energy.2009.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209003636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
    2. Sinton, Jonathan E., 2001. "Accuracy and reliability of China's energy statistics," China Economic Review, Elsevier, vol. 12(4), pages 373-383.
    3. Fan, Ying & Liao, Hua & Wei, Yi-Ming, 2007. "Can market oriented economic reforms contribute to energy efficiency improvement? Evidence from China," Energy Policy, Elsevier, vol. 35(4), pages 2287-2295, April.
    4. Bert M. Balk, 2005. "Divisia price and quantity indices: 80 years after," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(2), pages 119-158, May.
    5. Nguyen V. Hong, 1983. "Notes - Two Measures of Aggregate Energy Production Elasticities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. Bernard, Jean-Thomas & Cote, Bruno, 2005. "The measurement of the energy intensity of manufacturing industries: a principal components analysis," Energy Policy, Elsevier, vol. 33(2), pages 221-233, January.
    7. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    8. Jean-Thomas Bernard & Pierre Cauchon, 1987. "Thermal and Economic Measures of Energy Use: Differences and Implications," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 125-135.
    9. Sinton, Jonathan E. & Fridley, David G., 2000. "What goes up: recent trends in China's energy consumption," Energy Policy, Elsevier, vol. 28(10), pages 671-687, August.
    10. Ang, B.W., 1995. "Decomposition methodology in industrial energy demand analysis," Energy, Elsevier, vol. 20(11), pages 1081-1095.
    11. Soytas, Ugur & Sari, Ramazan, 2006. "Can China contribute more to the fight against global warming?," Journal of Policy Modeling, Elsevier, vol. 28(8), pages 837-846, November.
    12. Cleveland, Cutler J. & Kaufmann, Robert K. & Stern, David I., 2000. "Aggregation and the role of energy in the economy," Ecological Economics, Elsevier, vol. 32(2), pages 301-317, February.
    13. Liao, Hua & Fan, Ying & Wei, Yi-Ming, 2007. "What induced China's energy intensity to fluctuate: 1997-2006?," Energy Policy, Elsevier, vol. 35(9), pages 4640-4649, September.
    14. Sang V. Nguyen & Stephen H. Andrews, 1989. "The Effect of Energy Aggregation on Energy Elasticities: Some Evidence from U.S. Manufacturing Data," The Energy Journal, , vol. 10(1), pages 149-156, January.
    15. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    16. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    17. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
    18. Jay Zarnikau, 1999. "A Note: Will Tomorrow's Energy Efficiency Indices Prove Useful in Economic Studies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 139-145.
    19. Patterson, M.G., 1993. "An accounting framework for decomposing the energy-to-GDP ratio into its structural components of change," Energy, Elsevier, vol. 18(7), pages 741-761.
    20. Zarnikau, Jay, 1999. "Defining 'total energy use' in economic studies: does the aggregation approach matter?," Energy Economics, Elsevier, vol. 21(5), pages 485-492, October.
    21. Noureddine Berrah & Fei Feng & Roland Priddle & Leiping Wang, 2007. "Sustainable Energy in China : The Closing Window of Opportunity," World Bank Publications - Books, The World Bank Group, number 6625.
    22. Karbuz, Sohbet, 2004. "Conversion factors and oil statistics," Energy Policy, Elsevier, vol. 32(1), pages 41-45, January.
    23. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    24. Nguyen, Hong V., 1987. "Energy elasticities under Divisia and Btu aggregation," Energy Economics, Elsevier, vol. 9(4), pages 210-214, October.
    25. Sato, Kazuo, 1976. "The Ideal Log-Change Index Number," The Review of Economics and Statistics, MIT Press, vol. 58(2), pages 223-228, May.
    26. Choi, Ki-Hong & Ang, B.W., 2002. "Measuring thermal efficiency improvement in power generation," Energy, Elsevier, vol. 27(5), pages 447-455.
    27. Zarnikau, Jay & Guermouche, Sid & Schmidt, Philip, 1996. "Can different energy resources be added or compared?," Energy, Elsevier, vol. 21(6), pages 483-491.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Kerui & Lin, Boqiang, 2015. "Understanding the rapid growth of China's energy consumption: A comprehensive decomposition framework," Energy, Elsevier, vol. 90(P1), pages 570-577.
    2. Liao, Hua & Wei, Yi-Ming, 2012. "Will the aggregation approach affect energy efficiency performance assessment?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4537-4542.
    3. Ma, Linwei & Liu, Pei & Fu, Feng & Li, Zheng & Ni, Weidou, 2011. "Integrated energy strategy for the sustainable development of China," Energy, Elsevier, vol. 36(2), pages 1143-1154.
    4. Ito, Toshihide & Chen, Youqing & Ito, Shoichi & Yamaguchi, Kaoru, 2010. "Prospect of the upper limit of the energy demand in China from regional aspects," Energy, Elsevier, vol. 35(12), pages 5320-5327.
    5. Zhang, Ming & Guo, Fangyan, 2013. "Analysis of rural residential commercial energy consumption in China," Energy, Elsevier, vol. 52(C), pages 222-229.
    6. Chao Xu & Yunpeng Wang & Lili Li & Peng Wang, 2018. "Spatiotemporal Trajectory of China’s Provincial Energy Efficiency and Implications on the Route of Economic Transformation," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    7. Qiang Wang & Rongrong Li & Rui Jiang, 2016. "Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    8. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    9. Lin, Boqiang & Wang, Ailun, 2015. "Estimating energy conservation potential in China's commercial sector," Energy, Elsevier, vol. 82(C), pages 147-156.
    10. Lin, Boqiang & Xie, Chunping, 2013. "Estimation on oil demand and oil saving potential of China's road transport sector," Energy Policy, Elsevier, vol. 61(C), pages 472-482.
    11. Zhang, Jing & Deng, Shihuai & Shen, Fei & Yang, Xinyao & Liu, Guodong & Guo, Hang & Li, Yuanwei & Hong, Xiao & Zhang, Yanzong & Peng, Hong & Zhang, Xiaohong & Li, Li & Wang, Yingjun, 2011. "Modeling the relationship between energy consumption and economy development in China," Energy, Elsevier, vol. 36(7), pages 4227-4234.
    12. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    13. Xia, X.H. & Chen, Y.B. & Li, J.S. & Tasawar, H. & Alsaedi, A. & Chen, G.Q., 2014. "Energy regulation in China: Objective selection, potential assessment and responsibility sharing by partial frontier analysis," Energy Policy, Elsevier, vol. 66(C), pages 292-302.
    14. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
    15. Raza Muhammad khan & Sohail Farooq & Muhammad Akram Gilal, 2020. "Electricity Consumption and Economic Growth: A Time-Series Study on Pakistan," Global Economics Review, Humanity Only, vol. 5(1), pages 24-37, March.
    16. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    17. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    18. Chen, Zhan-Ming, 2014. "Inflationary effect of coal price change on the Chinese economy," Applied Energy, Elsevier, vol. 114(C), pages 301-309.
    19. Işıl Şirin SELÇUK, 2018. "Türkiye Sanayi Sektörü Enerji Verimliliği: Genişletilmiş Logaritmik Ortalama Divisia Endeks Ayrıştırma Yöntemi Uygulaması," Sosyoekonomi Journal, Sosyoekonomi Society, issue 26(37).
    20. Xia, X.H. & Huang, G.T. & Chen, G.Q. & Zhang, Bo & Chen, Z.M. & Yang, Q., 2011. "Energy security, efficiency and carbon emission of Chinese industry," Energy Policy, Elsevier, vol. 39(6), pages 3520-3528, June.
    21. Li, Fangyi & Song, Zhouying & Liu, Weidong, 2014. "China's energy consumption under the global economic crisis: Decomposition and sectoral analysis," Energy Policy, Elsevier, vol. 64(C), pages 193-202.
    22. Zheng, Tengfei & Qiang, Maoshan & Chen, Wenchao & Xia, Bingqing & Wang, Jianing, 2016. "An externality evaluation model for hydropower projects: A case study of the Three Gorges Project," Energy, Elsevier, vol. 108(C), pages 74-85.
    23. Liang, Sai & Zhang, Tianzhu, 2011. "Interactions of energy technology development and new energy exploitation with water technology development in China," Energy, Elsevier, vol. 36(12), pages 6960-6966.
    24. Xu, Tang & Baosheng, Zhang & Lianyong, Feng & Masri, Marwan & Honarvar, Afshin, 2011. "Economic impacts and challenges of China’s petroleum industry: An input–output analysis," Energy, Elsevier, vol. 36(5), pages 2905-2911.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrews-Speed, Philip, 2009. "China's ongoing energy efficiency drive: Origins, progress and prospects," Energy Policy, Elsevier, vol. 37(4), pages 1331-1344, April.
    2. Jin Zhang and David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    3. Ma, Hengyun & Oxley, Les & Gibson, John, 2010. "China's energy economy: A survey of the literature," Economic Systems, Elsevier, vol. 34(2), pages 105-132, June.
    4. Kahrl, Fredrich & Roland-Holst, David, 2009. "Growth and structural change in China's energy economy," Energy, Elsevier, vol. 34(7), pages 894-903.
    5. Herrerias, M.J. & Cuadros, A. & Orts, V., 2013. "Energy intensity and investment ownership across Chinese provinces," Energy Economics, Elsevier, vol. 36(C), pages 286-298.
    6. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
    7. Liao, Hua & Fan, Ying & Wei, Yi-Ming, 2007. "What induced China's energy intensity to fluctuate: 1997-2006?," Energy Policy, Elsevier, vol. 35(9), pages 4640-4649, September.
    8. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    9. Wang, Wenchao & Mu, Hailin & Kang, Xudong & Song, Rongchen & Ning, Yadong, 2010. "Changes in industrial electricity consumption in china from 1998 to 2007," Energy Policy, Elsevier, vol. 38(7), pages 3684-3690, July.
    10. Wu, Yanrui, 2012. "Energy intensity and its determinants in China's regional economies," Energy Policy, Elsevier, vol. 41(C), pages 703-711.
    11. Zhang, Jing & Deng, Shihuai & Shen, Fei & Yang, Xinyao & Liu, Guodong & Guo, Hang & Li, Yuanwei & Hong, Xiao & Zhang, Yanzong & Peng, Hong & Zhang, Xiaohong & Li, Li & Wang, Yingjun, 2011. "Modeling the relationship between energy consumption and economy development in China," Energy, Elsevier, vol. 36(7), pages 4227-4234.
    12. Herrerias, M.J. & Cuadros, A. & Luo, D., 2016. "Foreign versus indigenous innovation and energy intensity: Further research across Chinese regions," Applied Energy, Elsevier, vol. 162(C), pages 1374-1384.
    13. Shahiduzzaman, Md. & Alam, Khorshed, 2013. "Changes in energy efficiency in Australia: A decomposition of aggregate energy intensity using logarithmic mean Divisia approach," Energy Policy, Elsevier, vol. 56(C), pages 341-351.
    14. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
    15. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    16. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2006. "Dynamics of energy-related CO2 emissions in China during 1980 to 2002: The relative importance of energy supply-side and demand-side effects," Energy Policy, Elsevier, vol. 34(18), pages 3549-3572, December.
    17. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    18. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    19. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    20. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.

    More about this item

    Keywords

    Divisia; Energy aggregation; Imperfect substitutability; China;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:1:p:28-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.