IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i10p1059-d81002.html
   My bibliography  Save this article

Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China

Author

Listed:
  • Qiang Wang

    (School of Economic & Management, China University of Petroleum (Huadong), No. 66 West Changjiang Road, Qingdao 266580, China)

  • Rongrong Li

    (School of Economic & Management, China University of Petroleum (Huadong), No. 66 West Changjiang Road, Qingdao 266580, China)

  • Rui Jiang

    (School of Economic & Management, China University of Petroleum (Huadong), No. 66 West Changjiang Road, Qingdao 266580, China)

Abstract

China has overtaken the United States as the world’s largest producer of carbon dioxide, with industrial carbon emissions (ICE) accounting for approximately 65% of the country’s total emissions. Understanding the ICE decoupling patterns and factors influencing the decoupling status is a prerequisite for balancing economic growth and carbon emissions. This paper provides an overview of ICE based on decoupling elasticity and the Tapio decoupling model. Furthermore, the study identifies the factors contributing to ICE changes in China, using the Kaya identity and Log Mean Divisia Index (LMDI) techniques. Based on the effects and contributions of ICE, we close with a number of recommendations. The results revealed a significant upward trend of ICE during the study period 1994 to 2013, with a total amount of 11,147 million tons. Analyzing the decoupling relationship indicates that “weak decoupling” and “expansive decoupling” were the main states during the study period. The decomposition analysis showed that per capita wealth associated with industrial outputs and energy intensity are the main driving force of ICE, while energy intensity of industrial output and energy structure are major determinants for ICE reduction. The largest contributing cumulative effect to ICE is per capita wealth, at 1.23 in 2013. This factor is followed by energy intensity, with a contributing cumulative effect of −0.32. The cumulative effects of energy structure and population are relatively small, at 0.01 and 0.08, respectively.

Suggested Citation

  • Qiang Wang & Rongrong Li & Rui Jiang, 2016. "Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1059-:d:81002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/10/1059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/10/1059/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Bruyn, S. M. & van den Bergh, J. C. J. M. & Opschoor, J. B., 1998. "Economic growth and emissions: reconsidering the empirical basis of environmental Kuznets curves," Ecological Economics, Elsevier, vol. 25(2), pages 161-175, May.
    2. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    3. Li, Wei & Younger, Paul L. & Cheng, Yuanping & Zhang, Baoyong & Zhou, Hongxing & Liu, Qingquan & Dai, Tao & Kong, Shengli & Jin, Kan & Yang, Quanlin, 2015. "Addressing the CO2 emissions of the world's largest coal producer and consumer: Lessons from the Haishiwan Coalfield, China," Energy, Elsevier, vol. 80(C), pages 400-413.
    4. Blesl, Markus & Das, Anjana & Fahl, Ulrich & Remme, Uwe, 2007. "Role of energy efficiency standards in reducing CO2 emissions in Germany: An assessment with TIMES," Energy Policy, Elsevier, vol. 35(2), pages 772-785, February.
    5. Nuno Carlos Leit o, 2015. "Energy Consumption and Foreign Direct Investment: A Panel Data Analysis for Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 138-147.
    6. Wang, Qiang & Li, Rongrong, 2016. "Impact of cheaper oil on economic system and climate change: A SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 925-931.
    7. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    8. Qiang Wang, 2014. "China should aim for a total cap on emissions," Nature, Nature, vol. 512(7513), pages 115-115, August.
    9. Diakoulaki, D. & Mandaraka, M., 2007. "Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector," Energy Economics, Elsevier, vol. 29(4), pages 636-664, July.
    10. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    11. Cosimo Magazzino, 2014. "A Panel VAR Approach of the Relationship among Economic Growth, CO2 Emissions, and Energy Use in the ASEAN-6 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 546-553.
    12. Wang, Qiang & Li, Rongrong, 2015. "Cheaper oil: A turning point in Paris climate talk?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1186-1192.
    13. Shahbaz, Muhammad & Ozturk, Ilhan & Afza, Talat & Ali, Amjad, 2013. "Revisiting the environmental Kuznets curve in a global economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 494-502.
    14. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.
    15. Shahbaz, Muhammad & Loganathan, Nanthakumar & Muzaffar, Ahmed Taneem & Ahmed, Khalid & Ali Jabran, Muhammad, 2016. "How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 83-93.
    16. Wei Li & Shuang Sun & Hao Li, 2015. "Decomposing the decoupling relationship between energy-related CO 2 emissions and economic growth in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 977-997, November.
    17. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    18. Wang, Qiang & Chen, Xi & Yi-chong, Xu, 2013. "Accident like the Fukushima unlikely in a country with effective nuclear regulation: Literature review and proposed guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 126-146.
    19. Shahbaz, Muhammad & Mallick, Hrushikesh & Mahalik, Mantu Kumar & Sadorsky, Perry, 2016. "The role of globalization on the recent evolution of energy demand in India: Implications for sustainable development," Energy Economics, Elsevier, vol. 55(C), pages 52-68.
    20. Qiang Wang, 2013. "China has the capacity to lead in carbon trading," Nature, Nature, vol. 493(7432), pages 273-273, January.
    21. Weibin Lin & Jin Yang & Bin Chen, 2011. "Temporal and Spatial Analysis of Integrated Energy and Environment Efficiency in China Based on a Green GDP Index," Energies, MDPI, vol. 4(9), pages 1-15, September.
    22. Wang, Qiang & Li, Rongrong, 2016. "Sino-Venezuelan oil-for-loan deal – the Chinese strategic gamble?#," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 817-822.
    23. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    24. Cosimo Magazzino, 2016. "The relationship between real GDP, CO2 emissions, and energy use in the GCC countries: A time series approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1152729-115, December.
    25. Kofi Adom, Philip & Bekoe, William & Amuakwa-Mensah, Franklin & Mensah, Justice Tei & Botchway, Ebo, 2012. "Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics," Energy, Elsevier, vol. 47(1), pages 314-325.
    26. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    27. Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
    28. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    29. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    30. Chung, William & Kam, M.S. & Ip, C.Y., 2011. "A study of residential energy use in Hong Kong by decomposition analysis, 1990–2007," Applied Energy, Elsevier, vol. 88(12), pages 5180-5187.
    31. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    32. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.
    33. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    34. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
    35. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    36. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    37. Nuno Carlos Leit o, 2014. "Economic Growth, Carbon Dioxide Emissions, Renewable Energy and Globalization," International Journal of Energy Economics and Policy, Econjournals, vol. 4(3), pages 391-399.
    38. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
    39. Qiang Wang, 2013. "Nuclear safety lies in greater transparency," Nature, Nature, vol. 494(7438), pages 403-403, February.
    40. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    41. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    42. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    43. Zhao, Min & Tan, Lirong & Zhang, Weiguo & Ji, Minhe & Liu, Yuan & Yu, Lizhong, 2010. "Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method," Energy, Elsevier, vol. 35(6), pages 2505-2510.
    44. Wang, Qiang & Chen, Xi, 2013. "Rethinking and reshaping the climate policy: Literature review and proposed guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 469-477.
    45. Wang, Qiang & Chen, Xi, 2012. "China's electricity market-oriented reform: From an absolute to a relative monopoly," Energy Policy, Elsevier, vol. 51(C), pages 143-148.
    46. Wood, Richard & Lenzen, Manfred, 2006. "Zero-value problems of the logarithmic mean divisia index decomposition method," Energy Policy, Elsevier, vol. 34(12), pages 1326-1331, August.
    47. Wang, Qiang & Chen, Xi, 2015. "Energy policies for managing China’s carbon emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 470-479.
    48. Wang, Qiang & Chen, Xi, 2012. "Regulatory transparency—How China can learn from Japan's nuclear regulatory failures?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3574-3578.
    49. Tao Wang & Jim Watson, 2008. "China's carbon emissions and international trade: implications for post-2012 policy," Climate Policy, Taylor & Francis Journals, vol. 8(6), pages 577-587, November.
    50. Wang, Qiang & Li, Rongrong, 2016. "Natural gas from shale formation: A research profile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1-6.
    51. Wang, W.W. & Zhang, M. & Zhou, M., 2011. "Using LMDI method to analyze transport sector CO2 emissions in China," Energy, Elsevier, vol. 36(10), pages 5909-5915.
    52. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
    53. Scholl, Lynn & Schipper, Lee & Kiang, Nancy, 1996. "CO2 emissions from passenger transport : A comparison of international trends from 1973 to 1992," Energy Policy, Elsevier, vol. 24(1), pages 17-30, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    2. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
    3. Xiaoping Zhu & Rongrong Li, 2017. "An Analysis of Decoupling and Influencing Factors of Carbon Emissions from the Transportation Sector in the Beijing-Tianjin-Hebei Area, China," Sustainability, MDPI, vol. 9(5), pages 1-19, April.
    4. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    5. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    6. Min Su & Rui Jiang & Rongrong Li, 2017. "Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    7. Jiefang Dong & Chun Deng & Rongrong Li & Jieyu Huang, 2016. "Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models," Sustainability, MDPI, vol. 9(1), pages 1-15, December.
    8. Rui Jiang & Yulin Zhou & Rongrong Li, 2018. "Moving to a Low-Carbon Economy in China: Decoupling and Decomposition Analysis of Emission and Economy from a Sector Perspective," Sustainability, MDPI, vol. 10(4), pages 1-12, March.
    9. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    10. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    11. Rongrong Li & Min Su, 2017. "The Role of Natural Gas and Renewable Energy in Curbing Carbon Emission: Case Study of the United States," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    12. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
    13. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    14. Rongrong Li & Xue-Ting Jiang, 2017. "Inequality of Carbon Intensity: Empirical Analysis of China 2000–2014," Sustainability, MDPI, vol. 9(5), pages 1-12, April.
    15. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    16. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    17. Rongrong Li & Rui Jiang, 2017. "Moving Low-Carbon Construction Industry in Jiangsu Province: Evidence from Decomposition and Decoupling Models," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    18. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    19. Wang, Qiang & Li, Rongrong, 2016. "Impact of cheaper oil on economic system and climate change: A SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 925-931.
    20. Chun Deng & Jie-Fang Dong, 2016. "Coal Consumption Reduction in Shandong Province: A Dynamic Vector Autoregression Model," Sustainability, MDPI, vol. 8(9), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1059-:d:81002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.