Developing a Proximate Component Prediction Model of Biomass Based on Element Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pentananunt, Ranu & Rahman, A.N.M.Mizanur & Bhattacharya, S.C., 1990. "Upgrading of biomass by means of torrefaction," Energy, Elsevier, vol. 15(12), pages 1175-1179.
- Oh, Kwang Cheol & Kim, Junghwan & Park, Sun Yong & Kim, Seok Jun & Cho, La Hoon & Lee, Chung Geon & Roh, Jiwon & Kim, Dae Hyun, 2021. "Development and validation of torrefaction optimization model applied element content prediction of biomass," Energy, Elsevier, vol. 214(C).
- Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Po-Chih Kuo & Wei Wu, 2014. "Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification," Energies, MDPI, vol. 8(1), pages 1-17, December.
- Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
- Ye-Eun Lee & Jun-Ho Jo & I-Tae Kim & Yeong-Seok Yoo, 2018. "Value-Added Performance and Thermal Decomposition Characteristics of Dumped Food Waste Compost by Pyrolysis," Energies, MDPI, vol. 11(5), pages 1-14, April.
- He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Mukesh Kumar Soothar & Abdoul Kader Mounkaila Hamani & Mahendar Kumar Sootahar & Jingsheng Sun & Gao Yang & Saleem Maseeh Bhatti & Adama Traore, 2021. "Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize ( Zea mays L.) Seedlings under Salinity Stress," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
- Intan Nazirah Mohammad & Clarence M. Ongkudon & Mailin Misson, 2020. "Physicochemical Properties and Lignin Degradation of Thermal-Pretreated Oil Palm Empty Fruit Bunch," Energies, MDPI, vol. 13(22), pages 1-12, November.
- Zhiqiang Gu & Qi Zhang & Guobi Sun & Jiaxin Lu & Yuxin Liu & Zhenxia Huang & Shuming Xu & Jianghua Xiong & Yuhuan Liu, 2023. "Pretreatment of Biogas Slurry by Modified Biochars to Promote High-Value Treatment of Wastewater by Microalgae," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
- Niaz Ahmed & Ali Raza Shah & Subhan Danish & Khadiga Alharbi & Rahul Datta, 2022. "Acidified Carbon with Variable Irrigation Sources Impact on Rice Growth and Yield under Cd Toxic Alkaline Soil Conditions," Sustainability, MDPI, vol. 14(16), pages 1-29, August.
- Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
- Sokkeang Be & Soydoa Vinitnantharat & Anawat Pinisakul, 2021. "Effect of Mangrove Biochar Residue Amended Shrimp Pond Sediment on Nitrogen Adsorption and Leaching," Sustainability, MDPI, vol. 13(13), pages 1-19, June.
- Saowanee Wijitkosum, 2023. "Repurposing Disposable Bamboo Chopsticks Waste as Biochar for Agronomical Application," Energies, MDPI, vol. 16(2), pages 1-16, January.
- Granados, D.A. & Velásquez, H.I. & Chejne, F., 2014. "Energetic and exergetic evaluation of residual biomass in a torrefaction process," Energy, Elsevier, vol. 74(C), pages 181-189.
- Rhoda Afriyie Mensah & Vigneshwaran Shanmugam & Sreenivasan Narayanan & Nima Razavi & Adrian Ulfberg & Thomas Blanksvärd & Faez Sayahi & Peter Simonsson & Benjamin Reinke & Michael Försth & Gabriel Sa, 2021. "Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
- Mishra, Ranjeet Kumar & Mohanty, Kaustubha, 2019. "Pyrolysis of three waste biomass: Effect of biomass bed thickness and distance between successive beds on pyrolytic products yield and properties," Renewable Energy, Elsevier, vol. 141(C), pages 549-558.
- Alba Dieguez-Alonso & Axel Funke & Andrés Anca-Couce & Alessandro Girolamo Rombolà & Gerardo Ojeda & Jörg Bachmann & Frank Behrendt, 2018. "Towards Biochar and Hydrochar Engineering—Influence of Process Conditions on Surface Physical and Chemical Properties, Thermal Stability, Nutrient Availability, Toxicity and Wettability," Energies, MDPI, vol. 11(3), pages 1-26, February.
- Piotr Piersa & Hilal Unyay & Szymon Szufa & Wiktoria Lewandowska & Remigiusz Modrzewski & Radosław Ślężak & Stanisław Ledakowicz, 2022. "An Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1," Energies, MDPI, vol. 15(6), pages 1-34, March.
- Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Lithnes Kalaivani Palniandy & Li Wan Yoon & Wai Yin Wong & Siek-Ting Yong & Ming Meng Pang, 2019. "Application of Biochar Derived from Different Types of Biomass and Treatment Methods as a Fuel Source for Direct Carbon Fuel Cells," Energies, MDPI, vol. 12(13), pages 1-15, June.
- Truong Xuan Vuong & Thi Thu Ha Pham & Thi Thu Thuy Nguyen & Dung Thuy Nguyen Pham, 2023. "Effects of Biochar and Apatite on Chemical Forms of Lead and Zinc in Multi-Metal-Contaminated Soil after Incubation: A Comparison of Peanut Shell and Corn Cob Biochar," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
- Ting Gao & Qian Zhu & Zhidong Zhou & Yongbo Wu & Jianhui Xue, 2022. "Effects of Biochar-Based Fertilizers on Energy Characteristics and Growth of Black Locust Seedlings," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
More about this item
Keywords
proximate analysis; element analysis; prediction model; biomass;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:509-:d:1022961. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.