IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i13p2428-2446.html
   My bibliography  Save this article

Dynamic modelling and optimization of hydrogen storage in metal hydride beds

Author

Listed:
  • Kikkinides, Eustathios S.
  • Georgiadis, Michael C.
  • Stubos, Athanasios K.

Abstract

This work presents a systematic approach for modelling, optimization and control of metal hydride beds used for hydrogen storage. A detailed 2-D mathematical model is developed and validated against experimental and theoretical literature results. Based on recent advances in dynamic optimization, the objective is then to find the optimal process design (e.g. cooling systems design) and operating strategy (e.g. cooling fluid profile over time) so as to minimize the storing time, while satisfying a number of operating constraints. Such constraints account for pressure drop limitations, cooling fluid availability, maximum tank temperature, etc. Optimization results indicate that almost 60% improvement of the storage time can be achieved, over the case where the system is not optimized, for a minimum storage capacity of 99% of the total bed capacity. Trade-offs between various objectives, alternative design options and optimal cooling control policies are systematically revealed illustrating the potential offered by modern optimization techniques.

Suggested Citation

  • Kikkinides, Eustathios S. & Georgiadis, Michael C. & Stubos, Athanasios K., 2006. "Dynamic modelling and optimization of hydrogen storage in metal hydride beds," Energy, Elsevier, vol. 31(13), pages 2428-2446.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:13:p:2428-2446
    DOI: 10.1016/j.energy.2005.10.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544205002392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.10.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Momirlan, M. & Veziroglu, T. N., 2002. "Current status of hydrogen energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 141-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedicini, R. & Schiavo, B. & Rispoli, P. & Saccà, A. & Carbone, A. & Gatto, I. & Passalacqua, E., 2014. "Progress in polymeric material for hydrogen storage application in middle conditions," Energy, Elsevier, vol. 64(C), pages 607-614.
    2. Kumar, Sandeep & Dhilip Kumar, T.J., 2020. "Hydrogen trapping potential of Ca decorated metal-graphyne framework," Energy, Elsevier, vol. 199(C).
    3. Jiao, Kui & Li, Xianguo & Yin, Yan & Zhou, Yibo & Yu, Shuhai & Du, Qing, 2012. "Effects of various operating conditions on the hydrogen absorption processes in a metal hydride tank," Applied Energy, Elsevier, vol. 94(C), pages 257-269.
    4. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    5. Xiao, Jinsheng & Tong, Liang & Bénard, Pierre & Chahine, Richard, 2020. "Thermodynamic analysis for hydriding-dehydriding cycle of metal hydride system," Energy, Elsevier, vol. 191(C).
    6. Gkanas, Evangelos I. & Christodoulou, Christodoulos N. & Tzamalis, George & Stamatakis, Emmanuel & Chroneos, Alexander & Deligiannis, Konstantinos & Karagiorgis, George & Stubos, Athanasios K., 2020. "Numerical investigation on the operation and energy demand of a seven-stage metal hydride hydrogen compression system for Hydrogen Refuelling Stations," Renewable Energy, Elsevier, vol. 147(P1), pages 164-178.
    7. Nathalie Sick & Matthias Blug & Jens Leker, 2014. "The Influence of Raw Material Prices on the Development of Hydrogen Storage Materials: The Case of Metal Hydrides," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 5(4), pages 735-760, December.
    8. Ma, Li-Juan & Wang, Jianfeng & Han, Min & Jia, Jianfeng & Wu, Hai-Shun & Zhang, Xiang, 2019. "Adsorption of multiple H2 molecules on the complex TiC6H6: An unusual combination of chemisorption and physisorption," Energy, Elsevier, vol. 171(C), pages 315-325.
    9. Wang, Di & Wang, Yuqi & Huang, Zhuonan & Yang, Fusheng & Wu, Zhen & Zheng, Lan & Wu, Le & Zhang, Zaoxiao, 2019. "Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor," Energy, Elsevier, vol. 173(C), pages 443-456.
    10. Kou, Huaqin & Luo, Wenhua & Huang, Zhiyong & Sang, Ge & Meng, Daqiao & Zhang, Guanghui & Chen, Changan & Luo, Deli & Hu, Changwen, 2015. "Fabrication and experimental validation of a full-scale depleted uranium bed with thin double-layered annulus configuration for hydrogen isotopes recovery and delivery," Energy, Elsevier, vol. 90(P1), pages 588-594.
    11. Ipsakis, Dimitris & Voutetakis, Spyros & Seferlis, Panos & Stergiopoulos, Fotis & Papadopoulou, Simira & Elmasides, Costas, 2008. "The effect of the hysteresis band on power management strategies in a stand-alone power system," Energy, Elsevier, vol. 33(10), pages 1537-1550.
    12. Valero-Pedraza, María José & Martín-Cortés, Alexandra & Navarrete, Alexander & Bermejo, María Dolores & Martín, Ángel, 2015. "Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids," Energy, Elsevier, vol. 91(C), pages 742-750.
    13. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels," Energy, Elsevier, vol. 232(C).
    14. Malleswararao, K. & Aswin, N. & Srinivasa Murthy, S. & Dutta, Pradip, 2022. "Studies on long-term and buffer modes of operations of a thermal energy storage system using coupled metal hydrides," Energy, Elsevier, vol. 258(C).
    15. Yousef Abdallat & Jehad Yamin, 2017. "Testing of Locally Available Jordanian Materials for Hydrogen Storage," Modern Applied Science, Canadian Center of Science and Education, vol. 11(11), pages 1-9, November.
    16. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Dai, Zhou-Qiao & Yang, Fu-Sheng, 2022. "Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device," Energy, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    2. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    3. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    4. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    5. Julius Akinbomi & Mohammad J. Taherzadeh, 2015. "Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes," Energies, MDPI, vol. 8(5), pages 1-20, May.
    6. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    7. Shi, Yaolu & Sun, Jie & Wei, Jinjia, 2024. "Proposal of a parabolic-trough-oriented photo-thermo-reactor with coaxial baffles and dual-bed for high-efficient solar-driven hydrogen production from methanol steam reforming," Renewable Energy, Elsevier, vol. 228(C).
    8. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    9. Koroneos, C. & Dompros, A. & Roumbas, G. & Moussiopoulos, N., 2005. "Advantages of the use of hydrogen fuel as compared to kerosene," Resources, Conservation & Recycling, Elsevier, vol. 44(2), pages 99-113.
    10. Wang, Cui & Zhu, Chao & Huang, Jianbing & Li, Linfeng & Jin, Hui, 2021. "Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor," Renewable Energy, Elsevier, vol. 168(C), pages 829-837.
    11. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    12. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).
    13. Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.
    14. Boretti, Alberto & Castelletto, Stefania, 2024. "Hydrogen energy storage requirements for solar and wind energy production to account for long-term variability," Renewable Energy, Elsevier, vol. 221(C).
    15. Beccali, M. & Brunone, S. & Cellura, M. & Franzitta, V., 2008. "Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings," Renewable Energy, Elsevier, vol. 33(3), pages 366-382.
    16. Mohammad Reza Maghami & Shahin navabi asl & Mohammad esmaeil Rezadad & Nader Ale Ebrahim & Chandima Gomes, 2015. "Qualitative and quantitative analysis of solar hydrogen generation literature from 2001 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 759-771, November.
    17. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    18. Magda Pęska & Tomasz Czujko & Marek Polański, 2020. "Hydrogenation Ability of Mg-Li Alloys," Energies, MDPI, vol. 13(8), pages 1-11, April.
    19. Chen, Wei-Hsin & Tsai, Ching-Wei & Lin, Yu-Li, 2017. "Numerical studies of the influences of bypass on hydrogen separation in a multichannel Pd membrane system," Renewable Energy, Elsevier, vol. 104(C), pages 259-270.
    20. Kakran, Shubham & Sidhu, Arpit & Kumar, Ashish & Ben Youssef, Adel & Lohan, Sheenam, 2023. "Hydrogen energy in BRICS-US: A whirl succeeding fuel treasure," Applied Energy, Elsevier, vol. 334(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:13:p:2428-2446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.