IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v105y2015i2d10.1007_s11192-015-1730-3.html
   My bibliography  Save this article

Qualitative and quantitative analysis of solar hydrogen generation literature from 2001 to 2014

Author

Listed:
  • Mohammad Reza Maghami

    (Universiti Putra Malaysia)

  • Shahin navabi asl

    (Islamic Azad University, Damghan Branch)

  • Mohammad esmaeil Rezadad

    (University of Malaya (UM))

  • Nader Ale Ebrahim

    (University of Malaya (UM))

  • Chandima Gomes

    (Universiti Putra Malaysia)

Abstract

Solar hydrogen generation is one of the new topics in the field of renewable energy. Recently, the rate of investigation about hydrogen generation is growing dramatically in many countries. Many studies have been done about hydrogen generation from natural resources such as wind, solar, coal etc. In this work we evaluated global scientific production of solar hydrogen generation papers from 2001 to 2014 in any journal of all the subject categories of the Science Citation Index compiled by Institute for Scientific Information (ISI), Philadelphia, USA. Solar hydrogen generation was used as keywords to search the parts of titles, abstracts, or keywords. The published output analysis showed that hydrogen generation from the sun research steadily increased over the past 14 years and the annual paper production in 2013 was about three times 2010-paper production. The number of papers considered in this research is 141 which have been published from 2001 to this date. There are clear distinctions among author keywords used in publications from the five most high-publishing countries such as USA, China, Australia, Germany and India in solar hydrogen studies. In order to evaluate this work quantitative and qualitative analysis methods were used to the development of global scientific production in a specific research field. The analytical results eventually provide several key findings and consider the overview hydrogen production according to the solar hydrogen generation.

Suggested Citation

  • Mohammad Reza Maghami & Shahin navabi asl & Mohammad esmaeil Rezadad & Nader Ale Ebrahim & Chandima Gomes, 2015. "Qualitative and quantitative analysis of solar hydrogen generation literature from 2001 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 759-771, November.
  • Handle: RePEc:spr:scient:v:105:y:2015:i:2:d:10.1007_s11192-015-1730-3
    DOI: 10.1007/s11192-015-1730-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-015-1730-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-015-1730-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Momirlan, M. & Veziroglu, T. N., 2002. "Current status of hydrogen energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 141-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra Ghorbani & Sanaz Kargaran & Ali Saberi & Manijeh Haghighinasab & Seyedh Mahboobeh Jamali & Nader Ale Ebrahim, 2022. "Trends and patterns in digital marketing research: bibliometric analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(2), pages 158-172, June.
    2. Doyeon Lee & Keunhwan Kim, 2021. "Research and Development Investment and Collaboration Framework for the Hydrogen Economy in South Korea," Sustainability, MDPI, vol. 13(19), pages 1-28, September.
    3. Carroquino, Javier & Roda, Vicente & Mustata, Radu & Yago, Jesús & Valiño, Luis & Lozano, Antonio & Barreras, Félix, 2018. "Combined production of electricity and hydrogen from solar energy and its use in the wine sector," Renewable Energy, Elsevier, vol. 122(C), pages 251-263.
    4. Wilke, Christoph & Bensmann, Astrid & Martin, Stefan & Utz, Annika & Hanke-Rauschenbach, Richard, 2018. "Optimal design of a district energy system including supply for fuel cell electric vehicles," Applied Energy, Elsevier, vol. 226(C), pages 129-144.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    2. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    3. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    4. Julius Akinbomi & Mohammad J. Taherzadeh, 2015. "Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes," Energies, MDPI, vol. 8(5), pages 1-20, May.
    5. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    6. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    7. Koroneos, C. & Dompros, A. & Roumbas, G. & Moussiopoulos, N., 2005. "Advantages of the use of hydrogen fuel as compared to kerosene," Resources, Conservation & Recycling, Elsevier, vol. 44(2), pages 99-113.
    8. Wang, Cui & Zhu, Chao & Huang, Jianbing & Li, Linfeng & Jin, Hui, 2021. "Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor," Renewable Energy, Elsevier, vol. 168(C), pages 829-837.
    9. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    10. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).
    11. Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.
    12. Beccali, M. & Brunone, S. & Cellura, M. & Franzitta, V., 2008. "Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings," Renewable Energy, Elsevier, vol. 33(3), pages 366-382.
    13. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    14. Magda Pęska & Tomasz Czujko & Marek Polański, 2020. "Hydrogenation Ability of Mg-Li Alloys," Energies, MDPI, vol. 13(8), pages 1-11, April.
    15. Chen, Wei-Hsin & Tsai, Ching-Wei & Lin, Yu-Li, 2017. "Numerical studies of the influences of bypass on hydrogen separation in a multichannel Pd membrane system," Renewable Energy, Elsevier, vol. 104(C), pages 259-270.
    16. Liu, P.F. & Chu, J.K. & Hou, S.J. & Xu, P. & Zheng, J.Y., 2012. "Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1817-1827.
    17. Nasir Uddin, Md. & Daud, W.M.A. Wan & Abbas, Hazim F., 2013. "Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 204-224.
    18. Mirza, Umar K. & Ahmad, Nasir & Harijan, Khanji & Majeed, Tariq, 2009. "A vision for hydrogen economy in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1111-1115, June.
    19. Contreras, A. & Posso, F., 2011. "Technical and financial study of the development in Venezuela of the hydrogen energy system," Renewable Energy, Elsevier, vol. 36(11), pages 3114-3123.
    20. Chai, Maojie & Chen, Zhangxin & Nourozieh, Hossein & Yang, Min, 2023. "Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection," Applied Energy, Elsevier, vol. 334(C).

    More about this item

    Keywords

    Solar hydrogen generation; Hydrogen generation; Water splitting; Hydrogen literature;
    All these keywords.

    JEL classification:

    • L0 - Industrial Organization - - General
    • L00 - Industrial Organization - - General - - - General
    • R0 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General
    • Z00 - Other Special Topics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:105:y:2015:i:2:d:10.1007_s11192-015-1730-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.