IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033826.html
   My bibliography  Save this article

Performance simulation of solar-driven absorption heat pump-membrane distillation system for combined desalination brine concentration with feed recirculation and cooling applications

Author

Listed:
  • Ayou, Dereje S.
  • Coronas, Alberto

Abstract

Desalination is the primary choice for securing freshwater provision in water-stressed regions and reduces the gap between rising demand and dwindling natural freshwater resources. However, global desalination plants are dominated by fossil fuel-driven desalination technologies with a 40–50 % recovery ratio. Hence, it is critical to decarbonize desalination and address brine effluent ecological concerns. In this paper, a solar-powered absorption heat pump (AHP)-membrane distillation (MD) system concept was proposed and analysed for small-scale RO plant brine reject management and space cooling applications. The MD subsystem is based on commercial MD modules with batch feed recirculation to reach saturation (from 70 to 260 g/kg salinity). The MD system's heating and cooling consumptions are supplied by the AHP (6.54 MWh and 13.47 MWh, respectively, for a complete batch cycle). The AHP is designed to supply hot water at 85 °C with 701.63 kW heating capacity and co-produced chilled water at 16 °C with a cooling capacity of 857.86 kW, about 67 % is utilized to cool down the brine reject to feed temperature. The thermal and exergy COPs were 1.273 and 0.40 at a driving heat of 135 °C. The solar-powered AHP-MD system is useful for sustainable desalination deployment besides space cooling applications.

Suggested Citation

  • Ayou, Dereje S. & Coronas, Alberto, 2024. "Performance simulation of solar-driven absorption heat pump-membrane distillation system for combined desalination brine concentration with feed recirculation and cooling applications," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033826
    DOI: 10.1016/j.energy.2024.133604
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moosazadeh, Mohammad & Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2023. "Techno-economic feasibility and environmental impact evaluation of a hybrid solar thermal membrane-based power desalination system," Energy, Elsevier, vol. 278(PA).
    2. Calise, Francesco & Dentice d’Accadia, Massimo & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Transient analysis of solar polygeneration systems including seawater desalination: A comparison between linear Fresnel and evacuated solar collectors," Energy, Elsevier, vol. 172(C), pages 647-660.
    3. Jie Song & Tian Li & Lucía Wright-Contreras & Adrian Wing-Keung Law, 2017. "A review of the current status of small-scale seawater reverse osmosis desalination," Water International, Taylor & Francis Journals, vol. 42(5), pages 618-631, July.
    4. Chen, Longxiang & Liu, Xi & Ye, Kai & Xie, Meina & Lan, Wenchao, 2023. "Thermodynamic and economic analysis of an integration system of multi-effect desalination (MED) with ice storage based on a heat pump," Energy, Elsevier, vol. 283(C).
    5. Petersen, Nils Hendrik & Arras, Maximilian & Wirsum, Manfred & Ma, Linwei, 2024. "Integration of large-scale heat pumps to assist sustainable water desalination and district cooling," Energy, Elsevier, vol. 289(C).
    6. World Bank, 2019. "The Role of Desalination in an Increasingly Water-Scarce World," World Bank Publications - Reports 31416, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuguang & Leng, Yuchi & Chaturvedi, Rishabh & Dutta, Ashit Kumar & Abdullaeva, Barno Sayfutdinovna & Fouad, Yasser, 2024. "Sustainable freshwater/energy supply through geothermal-centered layout tailored with humidification-dehumidification desalination unit; Optimized by regression machine learning techniques," Energy, Elsevier, vol. 303(C).
    2. Yajing Gu & He Ren & Hongwei Liu & Yonggang Lin & Weifei Hu & Tian Zou & Liyuan Zhang & Luoyang Huang, 2024. "Simulation of a Tidal Current-Powered Freshwater and Energy Supply System for Sustainable Island Development," Sustainability, MDPI, vol. 16(20), pages 1-24, October.
    3. Zhuo Wang & Yanjie Zhang & Tao Wang & Bo Zhang & Hongwen Ma, 2021. "Design and Energy Consumption Analysis of Small Reverse Osmosis Seawater Desalination Equipment," Energies, MDPI, vol. 14(8), pages 1-18, April.
    4. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    6. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    7. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.
    8. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Maria Vicidomini, 2020. "Thermo-Economic Analysis of Hybrid Solar-Geothermal Polygeneration Plants in Different Configurations," Energies, MDPI, vol. 13(9), pages 1-29, May.
    9. Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2024. "Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol and green hydrogen in a carbon-neutral context," Energy, Elsevier, vol. 290(C).
    10. Song, Daiwang & Zhou, Jie & Wang, Shenghui & Wang, Chengpeng & Liu, Sihan & Zhang, Yin & Tian, Lin & Xiao, Yexiang, 2023. "Adaptability evaluation of piston type high pressure pump integrated with energy recovery device through the numerical simulation and one year's island desalination," Energy, Elsevier, vol. 262(PA).
    11. Li, Tailu & Yu, Haifang & Qi, Jing & Yuan, Ye, 2024. "Thermodynamic performance of air-cooled seasonal cold energy storage for space cooling: A case study," Renewable Energy, Elsevier, vol. 235(C).
    12. Singh, Vivek & Kumar, Rakesh & Saxena, Abhishek & Dobriyal, Ritvik & Tiwari, Sumit & Singh, Desh Bandhu, 2024. "An analytical study on the effect of different photovoltaic technologies on enviro-economic parameter and energy metrics of active solar desalting unit," Energy, Elsevier, vol. 294(C).
    13. Pietrasanta, Ariana M. & Mussati, Sergio F. & Aguirre, Pio A. & Morosuk, Tatiana & Mussati, Miguel C., 2022. "Optimization of a multi-generation power, desalination, refrigeration and heating system," Energy, Elsevier, vol. 238(PB).
    14. Behzad ranjbar, & Mehrpooya, Mehdi & Marefati, Mohammad, 2021. "Parametric design and performance evaluation of a novel solar assisted thermionic generator and thermoelectric device hybrid system," Renewable Energy, Elsevier, vol. 164(C), pages 194-210.
    15. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    16. Calise, Francesco & Cappiello, Francesco L. & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2021. "Thermo-economic optimization of a novel hybrid renewable trigeneration plant," Renewable Energy, Elsevier, vol. 175(C), pages 532-549.
    17. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Kılkış, Birol & Kılkış, Şiir, 2024. "Rational Exergy Management Model based metrics for minimum carbon dioxide emissions and decarbonization in Glasgow," Energy, Elsevier, vol. 310(C).
    19. José M. Cardemil & Allan R. Starke & Adriana Zurita & Carlos Mata‐Torres & Rodrigo Escobar, 2021. "Integration schemes for hybrid and polygeneration concentrated solar power plants," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    20. Zarif Aminov & Khusniddin Alikulov & Tran-Dang Xuan, 2024. "Economic and Environmental Analyses of an Integrated Power and Hydrogen Production Systems Based on Solar Thermal Energy," Energies, MDPI, vol. 17(17), pages 1-43, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.