IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223023770.html
   My bibliography  Save this article

Charging station layout planning for electric vehicles based on power system flexibility requirements

Author

Listed:
  • Jiang, Ziyue
  • Han, Jingzuo
  • Li, Yetong
  • Chen, Xinyu
  • Peng, Tianduo
  • Xiong, Jianliang
  • Shu, Zhan

Abstract

Under the ambitious commitment of reaching carbon neutrality by 2060, China promotes both the deployment of renewable energy and the development of electric vehicles. Renewable fluctuations in the supply side and EV charging burden in the demand side propose higher requirements for the system flexibility. Optimized station layout and charging schedule could coordinate the load curve, provide system flexibility and accommodate the variable renewables. However, previous work only focuses on maximizing the profit of station holders and vehicle owners, lacking the consideration of the broader impact on power system. Here, we propose an EV charging station layout optimization methodology considering not only the EV charging behavior, sequential charging demand, but also its further impact on power system. The station layout and charging schedule are co-optimized with an integrated power system model. Applying the proposed methodology to Jiangxi in 2025, a cumulative charging station capacity of 1412, 1092, and 1415 MW is recommended in workplaces, residences, and shopping centers, respectively. Increased renewable energy integration and decreased thermal power generation are realized, achieving reduced carbon emissions of 800 kilotons. This work provides an effective methodology for slow charging station layout from the perspective of the integrated power system.

Suggested Citation

  • Jiang, Ziyue & Han, Jingzuo & Li, Yetong & Chen, Xinyu & Peng, Tianduo & Xiong, Jianliang & Shu, Zhan, 2023. "Charging station layout planning for electric vehicles based on power system flexibility requirements," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223023770
    DOI: 10.1016/j.energy.2023.128983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    2. Luyun Wang & Bo Zhou, 2023. "Optimal Planning of Electric Vehicle Fast-Charging Stations Considering Uncertain Charging Demands via Dantzig–Wolfe Decomposition," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    3. Han, Xingning & Chen, Xinyu & McElroy, Michael B. & Liao, Shiwu & Nielsen, Chris P. & Wen, Jinyu, 2019. "Modeling formulation and validation for accelerated simulation and flexibility assessment on large scale power systems under higher renewable penetrations," Applied Energy, Elsevier, vol. 237(C), pages 145-154.
    4. Xinyu Chen & Hongcai Zhang & Zhiwei Xu & Chris P. Nielsen & Michael B. McElroy & Jiajun Lv, 2018. "Impacts of fleet types and charging modes for electric vehicles on emissions under different penetrations of wind power," Nature Energy, Nature, vol. 3(5), pages 413-421, May.
    5. Jianxin Qin & Jing Qiu & Yating Chen & Tao Wu & Longgang Xiang, 2022. "Charging Stations Selection Using a Graph Convolutional Network from Geographic Grid," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    6. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    7. Huasheng Liu & Yu Li & Chongyu Zhang & Jin Li & Xiaowen Li & Yuqi Zhao, 2022. "Electric Vehicle Charging Station Location Model considering Charging Choice Behavior and Range Anxiety," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    8. Xinyang Guo & Xinyu Chen & Xia Chen & Peter Sherman & Jinyu Wen & Michael McElroy, 2023. "Grid integration feasibility and investment planning of offshore wind power under carbon-neutral transition in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    2. Sepehrzad, Reza & Khodadadi, Amin & Adinehpour, Sara & Karimi, Maede, 2024. "A multi-agent deep reinforcement learning paradigm to improve the robustness and resilience of grid connected electric vehicle charging stations against the destructive effects of cyber-attacks," Energy, Elsevier, vol. 307(C).
    3. Du, Zhili & Zheng, Lirong & Lin, Boqiang, 2024. "Influence of charging stations accessibility on charging stations utilization," Energy, Elsevier, vol. 298(C).
    4. Güven, Aykut Fatih, 2024. "Integrating electric vehicles into hybrid microgrids: A stochastic approach to future-ready renewable energy solutions and management," Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young-Eun Jeon & Suk-Bok Kang & Jung-In Seo, 2022. "Hybrid Predictive Modeling for Charging Demand Prediction of Electric Vehicles," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    2. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).
    3. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    4. Wen, Yifan & Zhang, Shaojun & Zhang, Jingran & Bao, Shuanghui & Wu, Xiaomeng & Yang, Daoyuan & Wu, Ye, 2020. "Mapping dynamic road emissions for a megacity by using open-access traffic congestion index data," Applied Energy, Elsevier, vol. 260(C).
    5. Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
    6. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Ziru Feng & Tian Cai & Kangli Xiang & Chenxi Xiang & Lei Hou, 2019. "Evaluating the Impact of Fossil Fuel Vehicle Exit on the Oil Demand in China," Energies, MDPI, vol. 12(14), pages 1-18, July.
    8. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    9. Dong, Lijun & Kang, Xiaojun & Pan, Mengqi & Zhao, Man & Zhang, Feng & Yao, Hong, 2020. "B-matching-based optimization model for energy allocation in sea surface monitoring," Energy, Elsevier, vol. 192(C).
    10. Wu, Chunying & Sun, Lingfang & Piao, Heng & Yao, Lijia, 2024. "Adaptive fuzzy finite time integral sliding mode control of the coordinated system for 350 MW supercritical once-through boiler unit to enhance flexibility," Energy, Elsevier, vol. 302(C).
    11. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).
    12. Zhang, Tong & Burke, Paul J. & Wang, Qi, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Resource and Energy Economics, Elsevier, vol. 76(C).
    13. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    14. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    15. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    16. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Jieshuang Dong & Yiming Li & Wenxiang Li & Songze Liu, 2022. "CO 2 Emission Reduction Potential of Road Transport to Achieve Carbon Neutrality in China," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    18. Zhong, Chao & Tan, Jiqiu & Zuo, Hongyan & Wu, Xin & Wang, Shaoli & Liu, Junan, 2021. "Synergy effects analysis on CDPF regeneration performance enhancement and NOx concentration reduction of NH3–SCR over Cu–ZSM–5," Energy, Elsevier, vol. 230(C).
    19. Panagiotis Skaloumpakas & Evangelos Spiliotis & Elissaios Sarmas & Alexios Lekidis & George Stravodimos & Dimitris Sarigiannis & Ioanna Makarouni & Vangelis Marinakis & John Psarras, 2022. "A Multi-Criteria Approach for Optimizing the Placement of Electric Vehicle Charging Stations in Highways," Energies, MDPI, vol. 15(24), pages 1-13, December.
    20. Han, Zhixin & Fang, Debin & Yang, Peiwen & Lei, Leyao, 2023. "Cooperative mechanisms for multi-energy complementarity in the electricity spot market," Energy Economics, Elsevier, vol. 127(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223023770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.