IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224029475.html
   My bibliography  Save this article

Optimized multi-criteria performance of a poly-generation layout including a Stirling engine and a supercritical Brayton cycle using biogas and methane as two potential fuels of a topping gas turbine cycle

Author

Listed:
  • Wang, Dan
  • Jasim, Dheyaa J.
  • Zoghi, Mohammad
  • Habibi, Hamed

Abstract

The combination of a supercritical Brayton cycle, an absorption chiller, a Stirling engine, a reverse osmosis desalination system, and a proton exchange membrane electrolyzer is investigated for waste heat recovery of a topping gas turbine cycle. The required electricity for hydrogen and freshwater production is supplied by the Stirling engine and supercritical Brayton cycle, respectively. In addition, the output power is provided by the gas turbine cycle, and the exiting cold stream of the Stirling engine is considered hot water for domestic utilization. A comparison is made between biogas and pure methane as two possible fuels for the system. Energy and exergy analyses, economic analysis using the specific exergy costing approach, and environmental analysis considering the carbon dioxide emissions are employed in the study. The three-objective optimization of the configuration discloses an exergy efficiency (ηex) of 39.49 % and 39.85 % in the cases of biogas and methane, respectively. The proposed system can improve ηex by 6.18 % points compared to the stand-alone GTC. The specific cost of poly-generation (cpoly) and the total cost rate (C˙tot) are obtained as 25.92 $GJ−1 and 249.5 $h−1 in the biogas mode, while these values are calculated as 36.75 $GJ−1 and 336.7 $h−1 in the methane case. The environmental cost rate (C˙env) of the system is 24.78 $h−1 in the case of biogas and 17.47 $h−1 in the methane mode. The results confirm the superiority of the methane case from the environmental viewpoint over biogas. However, the low values of cpoly and C˙tot in the biogas case indicate that biogas is superior to methane from a general standpoint. The utilization of the present setup for waste heat recovery of biogas-driven GTCs is recommended due to the higher ηex than the previous layouts.

Suggested Citation

  • Wang, Dan & Jasim, Dheyaa J. & Zoghi, Mohammad & Habibi, Hamed, 2024. "Optimized multi-criteria performance of a poly-generation layout including a Stirling engine and a supercritical Brayton cycle using biogas and methane as two potential fuels of a topping gas turbine ," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029475
    DOI: 10.1016/j.energy.2024.133172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224029475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.