IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v104y2015ipap181-193.html
   My bibliography  Save this article

Involving integrated seawater desalination-power plants in the optimal design of water distribution networks

Author

Listed:
  • González-Bravo, Ramón
  • Nápoles-Rivera, Fabricio
  • Ponce-Ortega, José María
  • El-Halwagi, Mahmoud M.

Abstract

Water and energy consumption has increased substantially over the last decades. Water scarcity has led to an increase in the extraction of fresh water from aquifers, dams and lakes, and it has produced serious overexploitation problems. Furthermore, the population growth in urbanized areas and the increase in water and energy demands in industry, agriculture and households have amplified this problem. As consequence, there are several regions where is almost impossible to satisfy the water demands using the available water resources. In this context, the use of alternative water resources such as reclaimed water, rainwater harvesting and the potential use of desalinated water can be an option. However, desalinated seawater is very expensive because the high energy consumption, and this way to integrate a seawater desalination plant to a power plant to simultaneously produce clean water and power can be an attractive option. This way, this paper proposes an optimization formulation for synthesizing water networks to satisfy water and energy demands in a macroscopic system involving the use of existing water resources and the installation of integrated seawater desalination-power plants. A case study from Mexico (where satisfying the water demands has become a serious problem) is presented. Results show that the integrated system is able to satisfy the current water demands, the excess desalinated water can be used to recharge the overexploited aquifers and interesting profits can be obtained from the sales of power.

Suggested Citation

  • González-Bravo, Ramón & Nápoles-Rivera, Fabricio & Ponce-Ortega, José María & El-Halwagi, Mahmoud M., 2015. "Involving integrated seawater desalination-power plants in the optimal design of water distribution networks," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 181-193.
  • Handle: RePEc:eee:recore:v:104:y:2015:i:pa:p:181-193
    DOI: 10.1016/j.resconrec.2015.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915300707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Hongchao & Wei, Tong & Lou, Inchio & Yang, Zhifeng & Shen, Zhenyao & Li, Yingxia, 2014. "Water saving effect on integrated water resource management," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 50-58.
    2. Agashichev, Sergei P. & El-Nashar, Ali M., 2005. "Systemic approach for techno-economic evaluation of triple hybrid (RO, MSF and power generation) scheme including accounting of CO2 emission," Energy, Elsevier, vol. 30(8), pages 1283-1303.
    3. Oliveira-Esquerre, Karla Patricia & Kiperstok, Asher & Mattos, Mario Cezar & Cohim, Eduardo & Kalid, Ricardo & Sales, Emerson Andrade & Pires, Victor Matta, 2011. "Taking advantage of storm and waste water retention basins as part of water use minimization in industrial sites," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 316-324.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mack-Vergara, Yazmin L. & John, Vanderley M., 2017. "Life cycle water inventory in concrete production—A review," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 227-250.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    2. Shen, Xiaobo & Lin, Boqiang, 2017. "The shadow prices and demand elasticities of agricultural water in China: A StoNED-based analysis," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 21-28.
    3. Xu, Hang & Yang, Rui, 2022. "Does agricultural water conservation policy necessarily reduce agricultural water extraction? Evidence from China," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Karagiannis, Ioannis C. & Soldatos, Peter G., 2010. "Estimation of critical CO2 values when planning the power source in water desalination: The case of the small Aegean islands," Energy Policy, Elsevier, vol. 38(8), pages 3891-3897, August.
    5. Yali Zhao & Min Li, 2020. "Effect of Water-Saving Society Policy on Water Consumption in the Cities of China: A Propensity Score Matching Analysis," IJERPH, MDPI, vol. 17(21), pages 1-14, November.
    6. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    7. Rosales-Asensio, Enrique & Borge-Diez, David & Pérez-Hoyos, Ana & Colmenar-Santos, Antonio, 2019. "Reduction of water cost for an existing wind-energy-based desalination scheme: A preliminary configuration," Energy, Elsevier, vol. 167(C), pages 548-560.
    8. Luo, Chending & Zhang, Na & Lior, Noam & Lin, Hu, 2011. "Proposal and analysis of a dual-purpose system integrating a chemically recuperated gas turbine cycle with thermal seawater desalination," Energy, Elsevier, vol. 36(6), pages 3791-3803.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:104:y:2015:i:pa:p:181-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.