IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics0360544224028639.html
   My bibliography  Save this article

Design and optimal scheduling of forecasting-based campus multi-energy complementary energy system

Author

Listed:
  • Dong, Weichao
  • Sun, Hexu
  • Li, Zheng
  • Yang, Huifang

Abstract

This study presents a complete campus multi-energy complementary energy system (MCES), including an accurate forecasting model, efficient MCES model, and effective multi-objective optimal scheduling strategy to better utilize renewable energy. A hybrid forecasting model, including multi-scale mathematical morphological decomposition, a bidirectional long short-term memory network, and subsequences to the original sequence (S2O) manner based on the rolling approach (RA), is utilized to forecast renewable energy variations. RA continuously updates input datasets to improve forecasting accuracy. Decomposition and forecasting modules are employed in an S2O manner to reduce the number of required modules and forecasting cost. The volatility of renewable energy is mitigated by supplementing energy sources with storage. During operation, the conversion times of different energies are reduced by reasonably planning the energy supply sequence based on different loads on the demand side, increasing the energy utilization rate. The proposed multi-objective optimal scheduling strategy includes a stacked multilevel-denoising autoencoder, non-dominated sorting genetic algorithm-II, and deep reinforcement learning (DRL) for surrogate-model building, Pareto frontier establishment, and optimal solution selection. This is the first study to use DRL to select the final optimal solution. A performance comparison confirms the proposed model effectively decreases costs and pollution while increasing thermal comfort.

Suggested Citation

  • Dong, Weichao & Sun, Hexu & Li, Zheng & Yang, Huifang, 2024. "Design and optimal scheduling of forecasting-based campus multi-energy complementary energy system," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028639
    DOI: 10.1016/j.energy.2024.133088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224028639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Zepeng & Han, Wei & Ye, Yiyin & Sui, Jun, 2024. "Multi-objective sustainability optimization of a solar-based integrated energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Chung, Jun Yeob & Park, Myeong Hyeon & Hong, Seong Ho & Baek, Jaehyun & Han, Changho & Lee, Sewon & Kang, Yong Tae & Kim, Yongchan, 2023. "Comparative performance evaluation of multi-objective optimized desiccant wheels coated with MIL-100 (Fe) and silica gel composite," Energy, Elsevier, vol. 283(C).
    3. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Hu, Yahui & Guo, Yingshi & Fu, Rui, 2023. "A novel wind speed forecasting combined model using variational mode decomposition, sparse auto-encoder and optimized fuzzy cognitive mapping network," Energy, Elsevier, vol. 278(PA).
    5. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    6. Hu, Huanling & Wang, Lin & Zhang, Dabin & Ling, Liwen, 2023. "Rolling decomposition method in fusion with echo state network for wind speed forecasting," Renewable Energy, Elsevier, vol. 216(C).
    7. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    8. Lu, Qing & Liu, Minzhe, 2024. "A multi-criteria compromise ranking decision-making approach for analysis and evaluation of community-integrated energy service system," Energy, Elsevier, vol. 306(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Chenhao & Zhang, Leyao & Zhou, Jianguo, 2024. "DMPR: A novel wind speed forecasting model based on optimized decomposition, multi-objective feature selection, and patch-based RNN," Energy, Elsevier, vol. 310(C).
    2. Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
    3. Agnieszka Operacz, 2021. "Possibility of Hydropower Development: A Simple-to-Use Index," Energies, MDPI, vol. 14(10), pages 1-19, May.
    4. Yuan, Peng & Pu, Yuran & Liu, Chang, 2021. "Improving electricity supply reliability in China: Cost and incentive regulation," Energy, Elsevier, vol. 237(C).
    5. Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
    6. Dylan Sheneth Edirisinghe & Ho-Seong Yang & Min-Sung Kim & Byung-Ha Kim & Sudath Prasanna Gunawardane & Young-Ho Lee, 2021. "Computational Flow Analysis on a Real Scale Run-of-River Archimedes Screw Turbine with a High Incline Angle," Energies, MDPI, vol. 14(11), pages 1-18, June.
    7. Yuzgec, Ugur & Dokur, Emrah & Balci, Mehmet, 2024. "A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting," Energy, Elsevier, vol. 300(C).
    8. Huo, Zhihong & Xu, Chang, 2022. "Distributed cooperative automatic generation control and multi-event triggered mechanisms co-design for networked wind-integrated power systems," Renewable Energy, Elsevier, vol. 193(C), pages 41-56.
    9. Shen, Jian-jian & Cheng, Chun-tian & Jia, Ze-bin & Zhang, Yang & Lv, Quan & Cai, Hua-xiang & Wang, Bang-can & Xie, Meng-fei, 2022. "Impacts, challenges and suggestions of the electricity market for hydro-dominated power systems in China," Renewable Energy, Elsevier, vol. 187(C), pages 743-759.
    10. Gebara, C.H. & Laurent, A., 2023. "National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Das, Pronob & Das, Barun K. & Rahman, Mushfiqur & Hassan, Rakibul, 2022. "Evaluating the prospect of utilizing excess energy and creating employments from a hybrid energy system meeting electricity and freshwater demands using multi-objective evolutionary algorithms," Energy, Elsevier, vol. 238(PB).
    12. Yang, Yi & Yuan, Zhuqing & Yang, Shengnan, 2022. "Difference in the drivers of industrial carbon emission costs determines the diverse policies in middle-income regions: A case of northwestern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
    14. Zhang, Tairan & Sobhani, Behrouz, 2023. "Optimal economic programming of an energy hub in the power system while taking into account the uncertainty of renewable resources, risk-taking and electric vehicles using a developed routing method," Energy, Elsevier, vol. 271(C).
    15. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    16. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    17. Costa, C.M. & Barbosa, J.C. & Castro, H. & Gonçalves, R. & Lanceros-Méndez, S., 2021. "Electric vehicles: To what extent are environmentally friendly and cost effective? – Comparative study by european countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Yang, Hua & Xu, Yong & Zhou, Kan & Li, Jiuyi, 2024. "Mapping development potential and priority zones for utility-scale photovoltaic on the Qinghai-Tibet Plateau," Renewable Energy, Elsevier, vol. 237(PA).
    19. Alsaleh, Mohd & Abdul-Rahim, A.S., 2022. "The pathway toward pollution mitigation in EU28 region: Does hydropower growth make a difference?," Renewable Energy, Elsevier, vol. 185(C), pages 291-301.
    20. Zhang, Haipeng & Wang, Jianzhou & Qian, Yuansheng & Li, Qiwei, 2024. "Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.