IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124015970.html
   My bibliography  Save this article

Feasibility analysis on the debrining for compressed air energy storage salt cavern with sediment

Author

Listed:
  • Xie, Dongzhou
  • Jiang, Tingting
  • Ren, Gaofeng
  • Chi, Ziqi
  • Cao, Dongling
  • He, Tao
  • Liao, Youqiang
  • Zhang, Yixuan

Abstract

Using the sediment void to store gas is a promising solution for the construction of compressed air energy storage (CAES) salt cavern with high impurity. However, it remains debatable whether the pressure loss of brine in the sediment can notably affect debrining. In this paper, the in-situ sediments are obtained, and their porosity, moisture content after debrining and permeability are measured. A model of debrining in salt cavern with sediment is built. The model prediction error of injection gas pressure is less than 0.34 %. A criterion for the feasibility evaluation of debrining for CAES salt cavern with sediment is proposed. The results show that the porosity of the in-situ sediment is 47.9 %. When the sediment volume reaches 98 % of the cavern volume, the pressure loss of brine in the sediment and the maximum gas pressure are less than 3.1 MPa and 17 MPa, respectively. The sediment has good permeability, it is feasible to debrine in salt cavern with sediment. It is suggested that the debrining rate and the tubing diameter increase to more than 120 m3/h and 0.14 m, respectively. This study provides valuable guidance for the debrining in salt caverns with sediment.

Suggested Citation

  • Xie, Dongzhou & Jiang, Tingting & Ren, Gaofeng & Chi, Ziqi & Cao, Dongling & He, Tao & Liao, Youqiang & Zhang, Yixuan, 2024. "Feasibility analysis on the debrining for compressed air energy storage salt cavern with sediment," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015970
    DOI: 10.1016/j.renene.2024.121529
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Tongtao & Yang, Chunhe & Wang, Huimeng & Ding, Shuanglong & Daemen, J.J.K., 2018. "Debrining prediction of a salt cavern used for compressed air energy storage," Energy, Elsevier, vol. 147(C), pages 464-476.
    2. Liang, Xiaopeng & Ma, Hongling & Cai, Rui & Zhao, Kai & Zeng, Zhen & Li, Hang & Yang, Chunhe, 2023. "Feasibility analysis of natural gas storage in the voids of sediment within salt cavern——A case study in China," Energy, Elsevier, vol. 285(C).
    3. Xie, Dongzhou & Wang, Tongtao & Li, Long & Guo, Kai & Ben, Jianhua & Wang, Duocai & Chai, Guoxing, 2023. "Modeling debrining of an energy storage salt cavern considering the effects of temperature," Energy, Elsevier, vol. 282(C).
    4. Li, Peng & Li, Yinping & Shi, Xilin & Zhao, Kai & Liu, Xin & Ma, Hongling & Yang, Chunhe, 2021. "Prediction method for calculating the porosity of insoluble sediments for salt cavern gas storage applications," Energy, Elsevier, vol. 221(C).
    5. Auffhammer, Maximilian & Carson, Richard T., 2008. "Forecasting the path of China's CO2 emissions using province-level information," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 229-247, May.
    6. Li, Peng & Li, Yinping & Shi, Xilin & Zhao, Kai & Liang, Xiaopeng & Ma, Hongling & Yang, Chunhe & Liu, Kai, 2022. "Compaction and restraining effects of insoluble sediments in underground energy storage salt caverns," Energy, Elsevier, vol. 249(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xiaopeng & Ma, Hongling & Cai, Rui & Zhao, Kai & Zeng, Zhen & Li, Hang & Yang, Chunhe, 2023. "Feasibility analysis of natural gas storage in the voids of sediment within salt cavern——A case study in China," Energy, Elsevier, vol. 285(C).
    2. Li, Jinlong & Zhang, Ning & Xu, Wenjie & Naumov, Dmitri & Fischer, Thomas & Chen, Yunmin & Zhuang, Duanyang & Nagel, Thomas, 2022. "The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns," Energy, Elsevier, vol. 244(PB).
    3. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    4. Li, Hang & Ma, Hongling & Zhao, Kai & Zhu, Shijie & Yang, Kun & Zeng, Zhen & Zheng, Zhuyan & Yang, Chunhe, 2024. "Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations," Energy, Elsevier, vol. 286(C).
    5. Wei, Xinxing & Shi, Xilin & Li, Yinping & Liu, Hejuan & Li, Peng & Ban, Shengnan & Liang, Xiaopeng & Zhu, Shijie & Zhao, Kai & Yang, Kun & Huang, Si & Yang, Chunhe, 2023. "Advances in research on gas storage in sediment void of salt cavern in China," Energy, Elsevier, vol. 284(C).
    6. Qiao, Weibiao & Fu, Zonghua & Du, Mingjun & Nan, Wei & Liu, Enbin, 2023. "Seasonal peak load prediction of underground gas storage using a novel two-stage model combining improved complete ensemble empirical mode decomposition and long short-term memory with a sparrow searc," Energy, Elsevier, vol. 274(C).
    7. Wei, Xinxing & Shi, Xilin & Ma, Hongling & Ban, Shengnan & Bai, Weizheng, 2024. "Experimental investigation on the oil extraction process for a novel underground oil storage method: Oil storage in salt cavern insoluble sediment voids," Energy, Elsevier, vol. 309(C).
    8. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    9. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    10. Jayanthakumaran, Kankesu & Verma, Reetu & Liu, Ying, 2012. "CO2 emissions, energy consumption, trade and income: A comparative analysis of China and India," Energy Policy, Elsevier, vol. 42(C), pages 450-460.
    11. QIN, Bo & WU, Jianfeng, 2015. "Does urban concentration mitigate CO2 emissions? Evidence from China 1998–2008," China Economic Review, Elsevier, vol. 35(C), pages 220-231.
    12. Newbold, Stephen C. & Johnston, Robert J., 2020. "Valuing non-market valuation studies using meta-analysis: A demonstration using estimates of willingness-to-pay for water quality improvements," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    13. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    14. He, Jie & Richard, Patrick, 2010. "Environmental Kuznets curve for CO2 in Canada," Ecological Economics, Elsevier, vol. 69(5), pages 1083-1093, March.
    15. Luo, Xiaohu & Caron, Justin & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "Interprovincial migration and the stringency of energy policy in China," Energy Economics, Elsevier, vol. 58(C), pages 164-173.
    16. Michael Cary, 2020. "Have greenhouse gas emissions from US energy production peaked? State level evidence from six subsectors," Environment Systems and Decisions, Springer, vol. 40(1), pages 125-134, March.
    17. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    18. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.
    19. Klemperer, Paul, 2009. "What is the Top Priority on Climate Change?," CEPR Discussion Papers 7141, C.E.P.R. Discussion Papers.
    20. Jianglong Li & Boqiang Lin, 2016. "Green Economy Performance and Green Productivity Growth in China’s Cities: Measures and Policy Implication," Sustainability, MDPI, vol. 8(9), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.