IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v209y2020ics0360544220315838.html
   My bibliography  Save this article

A spatial finer electric load estimation method based on night-light satellite image

Author

Listed:
  • Li, Peiran
  • Zhang, Haoran
  • Wang, Xin
  • Song, Xuan
  • Shibasaki, Ryosuke

Abstract

As a fundamental parameter of the electric grid, obtaining spatial electric load distribution is the premise and basis for numerous studies. As a public, world-wide, and spatialized dataset, NPP/VIIRS night-light satellite image has been long used for socio-economic information estimation, including electric consumption, while little attention has been given to the electric load estimation. Additionally, most of the previous studies were performed at a large spatial scale, which could not reflect the electric information inner a city. Therefore, this paper proposes a method to estimate electric load density at a township-level spatial scale based on NPP/VIIRS night-light satellite data. Firstly, we reveal the different fitting relationships between EC (Electric Consumption)-NLS (Night-Light Sum) and EL (Electric Load)-NLI (Night-Light Intensity). Then, we validated the spatial-scale’s influence on the estimation accuracy by experiment via generating a series of simulated datasets. After working out the super-resolution night-light image with the SRCNN (Super-Resolution Convolutional Neural Network) algorithm, we established a finer spatial estimation model. By taking a monthly data of Shanghai as a case study, we validate the model we established. The result shows that estimating electric load at township-level based on night-light satellite data is feasible, and the SRCNN algorithm can improve the performance.

Suggested Citation

  • Li, Peiran & Zhang, Haoran & Wang, Xin & Song, Xuan & Shibasaki, Ryosuke, 2020. "A spatial finer electric load estimation method based on night-light satellite image," Energy, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315838
    DOI: 10.1016/j.energy.2020.118475
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Kaifang & Yu, Bailang & Huang, Chang & Wu, Jianping & Sun, Xiufeng, 2018. "Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road," Energy, Elsevier, vol. 150(C), pages 847-859.
    2. Kazemzadeh, Mohammad-Rasool & Amjadian, Ali & Amraee, Turaj, 2020. "A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting," Energy, Elsevier, vol. 204(C).
    3. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    4. Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
    5. Tayab, Usman Bashir & Zia, Ali & Yang, Fuwen & Lu, Junwei & Kashif, Muhammad, 2020. "Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform," Energy, Elsevier, vol. 203(C).
    6. Doll, Christopher N.H. & Muller, Jan-Peter & Morley, Jeremy G., 2006. "Mapping regional economic activity from night-time light satellite imagery," Ecological Economics, Elsevier, vol. 57(1), pages 75-92, April.
    7. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
    8. Xie, Yanhua & Weng, Qihao, 2016. "Detecting urban-scale dynamics of electricity consumption at Chinese cities using time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System) nighttime light imageries," Energy, Elsevier, vol. 100(C), pages 177-189.
    9. Tian, Jiayang & Wang, Yufei & Feng, Xiao, 2016. "Simultaneous optimization of flow velocity and cleaning schedule for mitigating fouling in refinery heat exchanger networks," Energy, Elsevier, vol. 109(C), pages 1118-1129.
    10. Li, Shuyi & Cheng, Liang & Liu, Xiaoqiang & Mao, Junya & Wu, Jie & Li, Manchun, 2019. "City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data," Energy, Elsevier, vol. 189(C).
    11. Shi, Kaifang & Yang, Qingyuan & Fang, Guangliang & Yu, Bailang & Chen, Zuoqi & Yang, Chengshu & Wu, Jianping, 2019. "Evaluating spatiotemporal patterns of urban electricity consumption within different spatial boundaries: A case study of Chongqing, China," Energy, Elsevier, vol. 167(C), pages 641-653.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    2. Du, Mengbing & Ruan, Jianhui & Zhang, Li & Niu, Muchuan & Zhang, Zhe & Xia, Lang & Qian, Shuangyue & Chen, Chuchu, 2024. "China's local-level monthly residential electricity power consumption monitoring," Applied Energy, Elsevier, vol. 359(C).
    3. Zhao, Wei & Zhang, Haoran & Zheng, Jianqin & Dai, Yuanhao & Huang, Liqiao & Shang, Wenlong & Liang, Yongtu, 2021. "A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants," Energy, Elsevier, vol. 223(C).
    4. Zhang, Bo & Qiu, Rui & Liao, Qi & Liang, Yongtu & Ji, Haoran & Jing, Rui, 2022. "Design and operation optimization of city-level off-grid hydro–photovoltaic complementary system," Applied Energy, Elsevier, vol. 306(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiaxin & Lu, Feng, 2021. "Modeling the electricity consumption by combining land use types and landscape patterns with nighttime light imagery," Energy, Elsevier, vol. 234(C).
    2. Lu, Linlin & Weng, Qihao & Xie, Yanhua & Guo, Huadong & Li, Qingting, 2019. "An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery," Energy, Elsevier, vol. 189(C).
    3. Jasiński, Tomasz, 2019. "Modeling electricity consumption using nighttime light images and artificial neural networks," Energy, Elsevier, vol. 179(C), pages 831-842.
    4. Naeher,Dominik & Narayanan,Raghavan & Ziulu,Virginia, 2021. "Impacts of Energy Efficiency Projects in Developing Countries : Evidence from a SpatialDifference-in-Differences Analysis in Malawi," Policy Research Working Paper Series 9842, The World Bank.
    5. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    6. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
    7. Karodine Chreng & Han Soo Lee & Soklin Tuy, 2022. "A Hybrid Model for Electricity Demand Forecast Using Improved Ensemble Empirical Mode Decomposition and Recurrent Neural Networks with ERA5 Climate Variables," Energies, MDPI, vol. 15(19), pages 1-26, October.
    8. Yongming Xu & Yaping Mo & Shanyou Zhu, 2021. "Poverty Mapping in the Dian-Gui-Qian Contiguous Extremely Poor Area of Southwest China Based on Multi-Source Geospatial Data," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    9. Zhang, Pengfei & Cai, Wenqiu & Yao, Mingtao & Wang, Zhiyou & Yang, Luzhen & Wei, Wendong, 2020. "Urban carbon emissions associated with electricity consumption in Beijing and the driving factors," Applied Energy, Elsevier, vol. 275(C).
    10. Hu, Ting & Wang, Ting & Yan, Qingyun & Chen, Tiexi & Jin, Shuanggen & Hu, Jun, 2022. "Modeling the spatiotemporal dynamics of global electric power consumption (1992–2019) by utilizing consistent nighttime light data from DMSP-OLS and NPP-VIIRS," Applied Energy, Elsevier, vol. 322(C).
    11. Ahmad, Tanveer & Zhang, Hongcai, 2020. "Novel deep supervised ML models with feature selection approach for large-scale utilities and buildings short and medium-term load requirement forecasts," Energy, Elsevier, vol. 209(C).
    12. Du, Mengbing & Ruan, Jianhui & Zhang, Li & Niu, Muchuan & Zhang, Zhe & Xia, Lang & Qian, Shuangyue & Chen, Chuchu, 2024. "China's local-level monthly residential electricity power consumption monitoring," Applied Energy, Elsevier, vol. 359(C).
    13. Yunfeng Hu & Yunzhi Zhang, 2020. "Global Nighttime Light Change from 1992 to 2017: Brighter and More Uniform," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    14. Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
    15. Li, Shuyi & Cheng, Liang & Liu, Xiaoqiang & Mao, Junya & Wu, Jie & Li, Manchun, 2019. "City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data," Energy, Elsevier, vol. 189(C).
    16. Yongguang Zhu & Deyi Xu & Saleem H. Ali & Ruiyang Ma & Jinhua Cheng, 2019. "Can Nighttime Light Data Be Used to Estimate Electric Power Consumption? New Evidence from Causal-Effect Inference," Energies, MDPI, vol. 12(16), pages 1-14, August.
    17. Shi, Kaifang & Yang, Qingyuan & Fang, Guangliang & Yu, Bailang & Chen, Zuoqi & Yang, Chengshu & Wu, Jianping, 2019. "Evaluating spatiotemporal patterns of urban electricity consumption within different spatial boundaries: A case study of Chongqing, China," Energy, Elsevier, vol. 167(C), pages 641-653.
    18. Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
    19. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    20. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.