IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032018.html
   My bibliography  Save this article

Quantifying the inequality of urban electric power consumption and its evolutionary drivers in countries along the belt and road: Insights from satellite perspective

Author

Listed:
  • Zhong, Liang
  • Lin, Yongpeng
  • Yang, Peng
  • Liu, Xiaosheng
  • He, Yuanrong
  • Xie, Zhiying
  • Yu, Peng

Abstract

Understanding regional inequalities in electricity resources is crucial for achieving sustainable development goals, yet relevant spatiotemporal information remains limited. This study develops a systematic framework using multi-source nighttime light remote sensing data and geographical methods to reveal the inequality in electric power consumption (EPC) and its drivers along the Belt and Road (B&R) countries from 2000 to 2019. The findings show that EPC in the B&R region increased by 8.8 trillion kWh over the past 20 years, with a shift in its geographic center, highlighting mid-latitude cities as major growth hotspots. Differences in between-group and within-group inequality patterns across various spatial scales lead to a scale effect on EPC inequality. The overall EPC inequality of B&R decreased by 20 % between 2000 and 2019, with inequality between countries being the main contributor, accounting for about 70 %. However, at the national level, within-province inequality is the predominant source in most countries. The analysis identifies three key drivers, with affluence having a more significant positive impact on EPC inequality than population or electricity dependence. These findings are valuable for the sustainable development of urban energy and regional electricity resource planning amidst long-term geographical changes.

Suggested Citation

  • Zhong, Liang & Lin, Yongpeng & Yang, Peng & Liu, Xiaosheng & He, Yuanrong & Xie, Zhiying & Yu, Peng, 2024. "Quantifying the inequality of urban electric power consumption and its evolutionary drivers in countries along the belt and road: Insights from satellite perspective," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032018
    DOI: 10.1016/j.energy.2024.133425
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marian R. Chertow, 2000. "The IPAT Equation and Its Variants," Journal of Industrial Ecology, Yale University, vol. 4(4), pages 13-29, October.
    2. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Yang, Chengshu & Li, Linyi & Huang, Chang & Chen, Zuoqi & Liu, Rui & Wu, Jianping, 2016. "Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 184(C), pages 450-463.
    3. Anna Bruederle & Roland Hodler, 2018. "Nighttime lights as a proxy for human development at the local level," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-22, September.
    4. Wiesmann, Daniel & Lima Azevedo, Inês & Ferrão, Paulo & Fernández, John E., 2011. "Residential electricity consumption in Portugal: Findings from top-down and bottom-up models," Energy Policy, Elsevier, vol. 39(5), pages 2772-2779, May.
    5. Singh, Anoop & Jamasb, Tooraj & Nepal, Rabindra & Toman, Michael, 2018. "Electricity cooperation in South Asia: Barriers to cross-border trade," Energy Policy, Elsevier, vol. 120(C), pages 741-748.
    6. Maza, Adolfo & Villaverde, José, 2008. "The world per capita electricity consumption distribution: Signs of convergence?," Energy Policy, Elsevier, vol. 36(11), pages 4255-4261, November.
    7. Pandelara, Diego & Kristjanpoller, Werner & Michell, Kevin & Minutolo, Marcel C., 2022. "A fuzzy regression causality approach to analyze relationship between electrical consumption and GDP," Energy, Elsevier, vol. 239(PE).
    8. Mirnezami, Seyed Reza, 2014. "Electricity inequality in Canada: Should pricing reforms eliminate subsidies to encourage efficient usage?," Utilities Policy, Elsevier, vol. 31(C), pages 36-43.
    9. Hu, Ting & Huang, Xin, 2019. "A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 240(C), pages 778-792.
    10. Karanfil, Fatih & Li, Yuanjing, 2015. "Electricity consumption and economic growth: Exploring panel-specific differences," Energy Policy, Elsevier, vol. 82(C), pages 264-277.
    11. Wang, Yihan & Xiong, Siqin & Ma, Xiaoming, 2022. "Carbon inequality in global trade: Evidence from the mismatch between embodied carbon emissions and value added," Ecological Economics, Elsevier, vol. 195(C).
    12. Fumitaka Furuoka, 2015. "Electricity consumption and economic development in Asia: new data and new methods," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 29(1), pages 102-125, May.
    13. Hu, Ting & Wang, Ting & Yan, Qingyun & Chen, Tiexi & Jin, Shuanggen & Hu, Jun, 2022. "Modeling the spatiotemporal dynamics of global electric power consumption (1992–2019) by utilizing consistent nighttime light data from DMSP-OLS and NPP-VIIRS," Applied Energy, Elsevier, vol. 322(C).
    14. Cabral, Joilson de Assis & Legey, Luiz Fernando Loureiro & Freitas Cabral, Maria Viviana de, 2017. "Electricity consumption forecasting in Brazil: A spatial econometrics approach," Energy, Elsevier, vol. 126(C), pages 124-131.
    15. Lariviere, Isabelle & Lafrance, Gaetan, 1999. "Modelling the electricity consumption of cities: effect of urban density," Energy Economics, Elsevier, vol. 21(1), pages 53-66, February.
    16. Zhang, Huiming & Xu, Zhidong & Sun, Chuanwang & Elahi, Ehsan, 2018. "Targeted poverty alleviation using photovoltaic power: Review of Chinese policies," Energy Policy, Elsevier, vol. 120(C), pages 550-558.
    17. Zhong, Liang & Liu, Xiaosheng & Ao, Jianfeng, 2022. "Spatiotemporal dynamics evaluation of pixel-level gross domestic product, electric power consumption, and carbon emissions in countries along the belt and road," Energy, Elsevier, vol. 239(PA).
    18. Lu, Linlin & Weng, Qihao & Xie, Yanhua & Guo, Huadong & Li, Qingting, 2019. "An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery," Energy, Elsevier, vol. 189(C).
    19. Nock, Destenie & Levin, Todd & Baker, Erin, 2020. "Changing the policy paradigm: A benefit maximization approach to electricity planning in developing countries," Applied Energy, Elsevier, vol. 264(C).
    20. Opoku, Eric Evans Osei & Kufuor, Nana Kwabena & Manu, Sylvester Adasi, 2021. "Gender, electricity access, renewable energy consumption and energy efficiency," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    21. Krishna Malakar & Trupti Mishra & Anand Patwardhan, 2018. "Inequality in water supply in India: an assessment using the Gini and Theil indices," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 841-864, April.
    22. Mohammed, Nooriya A., 2018. "Modelling of unsuppressed electrical demand forecasting in Iraq for long term," Energy, Elsevier, vol. 162(C), pages 354-363.
    23. Wilhite, Harold & Nakagami, Hidetoshi & Masuda, Takashi & Yamaga, Yukiko & Haneda, Hiroshi, 1996. "A cross-cultural analysis of household energy use behaviour in Japan and Norway," Energy Policy, Elsevier, vol. 24(9), pages 795-803, September.
    24. Sun, Yeran & Wang, Shaohua & Zhang, Xucai & Chan, Ting On & Wu, Wenjie, 2021. "Estimating local-scale domestic electricity energy consumption using demographic, nighttime light imagery and Twitter data," Energy, Elsevier, vol. 226(C).
    25. Li, Shuyi & Cheng, Liang & Liu, Xiaoqiang & Mao, Junya & Wu, Jie & Li, Manchun, 2019. "City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Mengbing & Ruan, Jianhui & Zhang, Li & Niu, Muchuan & Zhang, Zhe & Xia, Lang & Qian, Shuangyue & Chen, Chuchu, 2024. "China's local-level monthly residential electricity power consumption monitoring," Applied Energy, Elsevier, vol. 359(C).
    2. Lu, Wenlu & Zhang, Da & He, Chunyang & Zhang, Xiwen, 2024. "Modeling the spatiotemporal dynamics of electric power consumption in China from 2000 to 2020 based on multisource remote sensing data and machine learning," Energy, Elsevier, vol. 308(C).
    3. Wang, Jiaxin & Lu, Feng, 2021. "Modeling the electricity consumption by combining land use types and landscape patterns with nighttime light imagery," Energy, Elsevier, vol. 234(C).
    4. Hu, Ting & Wang, Ting & Yan, Qingyun & Chen, Tiexi & Jin, Shuanggen & Hu, Jun, 2022. "Modeling the spatiotemporal dynamics of global electric power consumption (1992–2019) by utilizing consistent nighttime light data from DMSP-OLS and NPP-VIIRS," Applied Energy, Elsevier, vol. 322(C).
    5. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    6. Zhong, Liang & Liu, Xiaosheng & Ao, Jianfeng, 2022. "Spatiotemporal dynamics evaluation of pixel-level gross domestic product, electric power consumption, and carbon emissions in countries along the belt and road," Energy, Elsevier, vol. 239(PA).
    7. Thushyanthan Baskaran & Sonia Bhalotra & Brian Min & Yogesh Uppal, 2024. "Women legislators and economic performance," Journal of Economic Growth, Springer, vol. 29(2), pages 151-214, June.
    8. Yongxing Li & Wei Guo & Peixian Li & Xuesheng Zhao & Jinke Liu, 2023. "Exploring the Spatiotemporal Dynamics of CO 2 Emissions through a Combination of Nighttime Light and MODIS NDVI Data," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    9. Zhao, Congyu & Jia, Rongwen & Dong, Kangyin, 2023. "Does financial inclusion achieve the dual dividends of narrowing carbon inequality within cities and between cities? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    10. Lv, Zhuoran & Guo, Huadong & Zhang, Lu & Liang, Dong & Zhu, Qi & Liu, Xuting & Zhou, Heng & Liu, Yiming & Gou, Yiting & Dou, Xinyu & Chen, Guoqiang, 2024. "Urban public lighting classification method and analysis of energy and environmental effects based on SDGSAT-1 glimmer imager data," Applied Energy, Elsevier, vol. 355(C).
    11. Shengnan Jiang & Guoen Wei & Zhenke Zhang & Yue Wang & Minghui Xu & Qing Wang & Priyanko Das & Binglin Liu, 2020. "Detecting the Dynamics of Urban Growth in Africa Using DMSP/OLS Nighttime Light Data," Land, MDPI, vol. 10(1), pages 1-19, December.
    12. Hu, Ting & Huang, Xin, 2019. "A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 240(C), pages 778-792.
    13. Lu, Linlin & Weng, Qihao & Xie, Yanhua & Guo, Huadong & Li, Qingting, 2019. "An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery," Energy, Elsevier, vol. 189(C).
    14. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke & Karunarathna, Muditha, 2019. "Household demand for electricity: The role of market distortions and prices in competition policy," Energy Policy, Elsevier, vol. 134(C).
    15. Grottera, Carolina & Barbier, Carine & Sanches-Pereira, Alessandro & Abreu, Mariana Weiss de & Uchôa, Christiane & Tudeschini, Luís Gustavo & Cayla, Jean-Michel & Nadaud, Franck & Pereira Jr, Amaro Ol, 2018. "Linking electricity consumption of home appliances and standard of living: A comparison between Brazilian and French households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 877-888.
    16. Khraief, Naceur & Shahbaz, Muhammad & Mallick, Hrushikesh & Loganathan, Nanthakumar, 2016. "Estimation of Electricity Demand Function for Algeria: Revisit of Time Series Analysis," MPRA Paper 74870, University Library of Munich, Germany, revised 01 Nov 2016.
    17. Acheampong, Alex O. & Opoku, Eric Evans Osei & Dogah, Kingsley E., 2023. "The political economy of energy transition: The role of globalization and governance in the adoption of clean cooking fuels and technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    18. Khan, Muhammad Arshad & Abbas, Faisal, 2016. "The dynamics of electricity demand in Pakistan: A panel cointegration analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1159-1178.
    19. Boukarta Soufiane & Berezowska-Azzag Ewa, 2018. "Assessing Households’ Gas and Electricity Consumption: A Case Study of Djelfa, Algeria," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 111-129, December.
    20. Sijousa Basumatary & Mridula Devi & Konita Basumatary, 2021. "Determinants of Household Electricity Demand in Rural India: A Case Study of the Impacts of Government Subsidies and Surcharges," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 243-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.