IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224027233.html
   My bibliography  Save this article

Optimizing compressed air energy storage with organic Rankine cycle and ejector refrigeration for sustainable power and cooling provision

Author

Listed:
  • Qi, Ji
  • Liu, Zhiyong
  • Zhao, Yuhai
  • Yin, Huimin
  • Zhu, Fengwu

Abstract

In the pursuit of sustainable energy systems, integrating storage technologies is crucial. Compressed air energy storage (CAES) emerges as a significant option for ensuring reliable power supply during peak hours. This study focuses on a configuration combining a CAES unit with two integrated organic Rankine cycle and ejector refrigeration units (ORCERC). The primary objective is to ensure adequate power supply during peak hours in the discharge period, while also providing cooling capacity to enhance system flexibility and efficiency. The proposed system is evaluated from thermodynamic, exergoeconomic, and exergoenvironmental perspectives to determine optimal operating conditions for the CAES unit. A fluid selection process identified a suitable zeotropic mixture, R141b/Hexane, as the working fluid for both ORCERCs. The results demonstrate a net power production of 20,749.91 kW and a cooling load of 1448.23 kW, with cost and exergoenvironmental impact rates of $1193.59/h and 143.42 Pt/h, respectively. Additionally, the configuration achieves an exergy round-trip efficiency of 65.85 % and a payback period of 2.88 years. Increasing the HTES temperature from 1150 to 1250 K improved both the round-trip efficiency (RTE) and exergetic round-trip efficiency (ERTE) from 52.22 % to 53.39 % and 62.98 %–63.71 %, respectively, while reducing the product cost and exergoenvironmental impact rate from $1128 to $1117/h and 134.35 to 127.93 Pt/h, respectively. Three triple-objective optimization scenarios were considered, yielding diverse outcomes, each contributing unique insights into the system's performance and potential improvements.

Suggested Citation

  • Qi, Ji & Liu, Zhiyong & Zhao, Yuhai & Yin, Huimin & Zhu, Fengwu, 2024. "Optimizing compressed air energy storage with organic Rankine cycle and ejector refrigeration for sustainable power and cooling provision," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027233
    DOI: 10.1016/j.energy.2024.132949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224027233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.