IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224034601.html
   My bibliography  Save this article

Isobaric compressed air energy storage system: Water compensating cycle or CO2 compensating cycle?

Author

Listed:
  • Yang, Shanju
  • Zhang, Yao
  • Gao, Zening
  • Liu, Zhan

Abstract

Isobaric operation of air storage can remove the throttling losses existing in isochoric reservoir, making full use of the storage volume and lowering system construction cost. The water cycle and CO2 cycle are two of the most commonly configurations to stabilize the pressure in the air storage unit. The choice between the two cycles depends on whether the technical complexity and costs are justified by performance gains. This paper mainly focuses on developing the MAP design, a kindly selection diagram plotting the better value of performance indicators between the two systems, to determine the more favorable compensating cycle in the constant storage operation of the compressed air. The analysis results indicate that higher air storage pressure increases the system efficiency. The levelized cost of storage is provided with a valley value when the air storage pressure is at 6.6 MPa for the CO2 cycle and 14 MPa for the water cycle. The optimized systems can share a comparative efficiency of 68.04 % and 68.07 %, and the levelized cost of storage is 0.8237 ¥/kWh for the CO2 cycle and 0.7869 ¥/kWh for the water cycle. The water is suggested to be the compensating fluid for the isobaric system when the water machine efficiency is higher than 0.85 or else opting for CO2 proves to be a more economically viable choice.

Suggested Citation

  • Yang, Shanju & Zhang, Yao & Gao, Zening & Liu, Zhan, 2024. "Isobaric compressed air energy storage system: Water compensating cycle or CO2 compensating cycle?," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034601
    DOI: 10.1016/j.energy.2024.133682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.