IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224026550.html
   My bibliography  Save this article

A label-free battery state of health estimation method based on adversarial multi-domain adaptation network and relaxation voltage

Author

Listed:
  • Zhao, Xiaoyu
  • Wang, Zuolu
  • Miao, Haiyan
  • Yang, Wenxian
  • Gu, Fengshou
  • Ball, Andrew D.

Abstract

The state of health (SOH) estimation of lithium-ion batteries is crucial for the operational reliability and safety of electric vehicles. However, traditional data-driven methods face problems of label shortage and domain discrepancy caused by diverse battery types and operating conditions. This paper proposes a label-free SOH estimation method based on adversarial multi-domain adaptation technique and relaxation voltage (RV). Firstly, the raw RV and integral voltage are proposed to construct the two-dimensional input sequence to ensure high adaptability across various target domains. Secondly, a two-dimensional convolutional neural network integrated with fully connected layers is developed to establish the feature extractor and SOH estimator, which paves the way for effective knowledge transfer. Furthermore, an adversarial multi-domain adaptation method with a domain discriminator is developed to optimize the extraction of domain-invariant features and enable accurate SOH estimation without SOH labels. Datasets of 50 batteries with different temperatures and materials are used for the validation. The proposed method shows outstanding performance, achieving the average RMSE and MAE of 0.0274 and 0.0240 across various working temperatures, and 0.0177 and 0.0148 across different battery types. It suggests that the proposed method can achieve robust adaptive battery SOH estimation across multiple target domains without using SOH labels.

Suggested Citation

  • Zhao, Xiaoyu & Wang, Zuolu & Miao, Haiyan & Yang, Wenxian & Gu, Fengshou & Ball, Andrew D., 2024. "A label-free battery state of health estimation method based on adversarial multi-domain adaptation network and relaxation voltage," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026550
    DOI: 10.1016/j.energy.2024.132881
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224026550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Jiabei & Wu, Lifeng, 2023. "Cross-conditions capacity estimation of lithium-ion battery with constrained adversarial domain adaptation," Energy, Elsevier, vol. 277(C).
    2. Noelle, Daniel J. & Wang, Meng & Le, Anh V. & Shi, Yang & Qiao, Yu, 2018. "Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting," Applied Energy, Elsevier, vol. 212(C), pages 796-808.
    3. Li, Renzheng & Hong, Jichao & Zhang, Huaqin & Chen, Xinbo, 2022. "Data-driven battery state of health estimation based on interval capacity for real-world electric vehicles," Energy, Elsevier, vol. 257(C).
    4. Jiang, Bo & Zhu, Yuli & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range," Energy, Elsevier, vol. 263(PC).
    5. Chen, Si-Zhe & Liang, Zikang & Yuan, Haoliang & Yang, Ling & Xu, Fangyuan & Fan, Yuanliang, 2023. "A novel state of health estimation method for lithium-ion batteries based on constant-voltage charging partial data and convolutional neural network," Energy, Elsevier, vol. 283(C).
    6. Ni, Yulong & Xu, Jianing & Zhu, Chunbo & Pei, Lei, 2022. "Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model," Applied Energy, Elsevier, vol. 305(C).
    7. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Fan, Guodong & Zhang, Xi, 2023. "Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network," Applied Energy, Elsevier, vol. 330(PA).
    9. Yao, Jiachi & Chang, Zhonghao & Han, Te & Tian, Jingpeng, 2024. "Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems," Energy, Elsevier, vol. 294(C).
    10. Xu, Huanwei & Wu, Lingfeng & Xiong, Shizhe & Li, Wei & Garg, Akhil & Gao, Liang, 2023. "An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries," Energy, Elsevier, vol. 276(C).
    11. Yang, Jufeng & Li, Xin & Sun, Xiaodong & Cai, Yingfeng & Mi, Chris, 2023. "An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time," Energy, Elsevier, vol. 263(PB).
    12. Lyu, Chao & Song, Yankong & Zheng, Jun & Luo, Weilin & Hinds, Gareth & Li, Junfu & Wang, Lixin, 2019. "In situ monitoring of lithium-ion battery degradation using an electrochemical model," Applied Energy, Elsevier, vol. 250(C), pages 685-696.
    13. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    2. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    3. Chen, Si-Zhe & Liang, Zikang & Yuan, Haoliang & Yang, Ling & Xu, Fangyuan & Fan, Yuanliang, 2023. "A novel state of health estimation method for lithium-ion batteries based on constant-voltage charging partial data and convolutional neural network," Energy, Elsevier, vol. 283(C).
    4. Wei, Meng & Ye, Min & Zhang, Chuanwei & Wang, Qiao & Lian, Gaoqi & Xia, Baozhou, 2024. "Integrating mechanism and machine learning based capacity estimation for LiFePO4 batteries under slight overcharge cycling," Energy, Elsevier, vol. 296(C).
    5. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2024. "An adaptive and interpretable SOH estimation method for lithium-ion batteries based-on relaxation voltage cross-scale features and multi-LSTM-RFR2," Energy, Elsevier, vol. 304(C).
    6. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Constructing battery impedance spectroscopy using partial current in constant-voltage charging or partial relaxation voltage," Applied Energy, Elsevier, vol. 356(C).
    7. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    8. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    9. Li, Qingbo & Lu, Taolin & Lai, Chunyan & Li, Jiwei & Pan, Long & Ma, Changjun & Zhu, Yunpeng & Xie, Jingying, 2024. "Lithium-ion battery capacity estimation based on fragment charging data using deep residual shrinkage networks and uncertainty evaluation," Energy, Elsevier, vol. 290(C).
    10. Hong, Jichao & Zhang, Huaqin & Zhang, Xinyang & Yang, Haixu & Chen, Yingjie & Wang, Facheng & Huang, Zhongguo & Wang, Wei, 2024. "Online accurate voltage prediction with sparse data for the whole life cycle of Lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 369(C).
    11. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
    12. Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
    13. Chen, Xiang & Deng, Yelin & Wang, Xingxing & Yuan, Yinnan, 2024. "The capacity degradation path prediction for the prismatic lithium-ion batteries based on the multi-features extraction with SGPR," Energy, Elsevier, vol. 299(C).
    14. Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
    15. Xue, Jingsong & Ma, Wentao & Feng, Xiaoyang & Guo, Peng & Guo, Yaosong & Hu, Xianzhi & Chen, Badong, 2023. "Stacking integrated learning model via ELM and GRU with mixture correntropy loss for robust state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 284(C).
    16. Yao, Jiachi & Chang, Zhonghao & Han, Te & Tian, Jingpeng, 2024. "Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems," Energy, Elsevier, vol. 294(C).
    17. Singh, S. & Budarapu, P.R., 2024. "Deep machine learning approaches for battery health monitoring," Energy, Elsevier, vol. 300(C).
    18. Ko, Chi-Jyun & Chen, Kuo-Ching & Su, Ting-Wei, 2024. "Differential current in constant-voltage charging mode: A novel tool for state-of-health and state-of-charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 288(C).
    19. Fan, Wenjun & Zhu, Jiangong & Qiao, Dongdong & Jiang, Bo & Wang, Xueyuan & Wei, Xuezhe & Dai, Haifeng, 2024. "Prediction of nonlinear degradation knee-point and remaining useful life for lithium-ion batteries using relaxation voltage," Energy, Elsevier, vol. 294(C).
    20. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.