IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224026136.html
   My bibliography  Save this article

Leak localization in District Heating Networks integrating physical model-based and data driven-based methods: Impact of dataset construction on model performance

Author

Listed:
  • Yang, Guang
  • Xing, Dinghuang
  • Wang, Hai

Abstract

Leaks in district heating networks result in waste of water and heat, and even threaten personal safety. Various machine learning-based methods have been proposed to realize leak localization and gain satisfying performance based on a large amount of leak samples. However, the creation of such samples demands a substantial investment of time and computational resources, presenting challenges for real-time applications. Previous studies have rarely addressed the influence of leak dataset construction and efficient creation methods. To fill this limited area, this paper conducts a comparative analysis on the variables in leak dataset and proposes an effective method for sample dataset generation, complemented by a novel accuracy evaluation that incorporates the topological relationship among pipelines. A multi-source looped heating network is employed to do the case study. The results demonstrate that the proposed method achieves satisfactory leak localization performance with a significantly reduced training set. Furthermore, by segmenting the physical pipeline into multiple virtual pipelines and using the adjacent evaluation metric, the leak localization method achieves a 75 m error with an accuracy of 0.998.

Suggested Citation

  • Yang, Guang & Xing, Dinghuang & Wang, Hai, 2024. "Leak localization in District Heating Networks integrating physical model-based and data driven-based methods: Impact of dataset construction on model performance," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026136
    DOI: 10.1016/j.energy.2024.132839
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224026136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
    2. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    3. Ivana Lučin & Bože Lučin & Zoran Čarija & Ante Sikirica, 2021. "Data-Driven Leak Localization in Urban Water Distribution Networks Using Big Data for Random Forest Classifier," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
    4. Abdulshaheed, A. & Mustapha, F. & Ghavamian, A., 2017. "A pressure-based method for monitoring leaks in a pipe distribution system: A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 902-911.
    5. Wang, Hai & Wang, Haiying & Zhu, Tong & Deng, Wanli, 2017. "A novel model for steam transportation considering drainage loss in pipeline networks," Applied Energy, Elsevier, vol. 188(C), pages 178-189.
    6. Zheng, Xuejing & Hu, Fangshu & Wang, Yaran & Zheng, Lijun & Gao, Xinyong & Zhang, Huan & You, Shijun & Xu, Boxiao, 2021. "Leak detection of long-distance district heating pipeline: A hydraulic transient model-based approach," Energy, Elsevier, vol. 237(C).
    7. Mathivanan Durai & Peng Chi-Chuan & Chou-Wei Lan & Ho Chang, 2022. "Analysis of Leakage in a Sustainable Water Pipeline Based on a Magnetic Flux Leakage Technique," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Suyang & Chen, Jinyi & Gu, Wei & Fang, Xin & Yuan, Xiaodong, 2023. "An adaptive space-step simulation approach for steam heating network considering condensate loss," Energy, Elsevier, vol. 263(PA).
    2. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
    3. Han, Pu & Hua, Haobo & Wang, Hai & Shang, Jiandong, 2023. "A graphic partition method based on nodes learning for energy pipelines network simulation," Energy, Elsevier, vol. 282(C).
    4. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
    5. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    6. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    7. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    9. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2023. "Potential for supply temperature reduction of existing district heating substations," Energy, Elsevier, vol. 285(C).
    11. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    12. Jing, Mengke & Zhang, Shujie & Fu, Lisong & Cao, Guoquan & Wang, Rui, 2023. "Reducing heat losses from aging district heating pipes by using cured-in-place pipe liners," Energy, Elsevier, vol. 273(C).
    13. Grzegorz Kinelski & Jakub Stęchły & Piotr Bartkowiak, 2022. "Various Facets of Sustainable Smart City Management: Selected Examples from Polish Metropolitan Areas," Energies, MDPI, vol. 15(9), pages 1-23, April.
    14. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    15. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    16. Matjaž Perpar & Zlatko Rek, 2021. "The Ability of a Soil Temperature Gradient-Based Methodology to Detect Leaks from Pipelines in Buried District Heating Channels," Energies, MDPI, vol. 14(18), pages 1-13, September.
    17. Selva Calixto & Marco Cozzini & Giampaolo Manzolini, 2021. "Modelling of an Existing Neutral Temperature District Heating Network: Detailed and Approximate Approaches," Energies, MDPI, vol. 14(2), pages 1-16, January.
    18. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    19. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.
    20. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.