IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v69y2017icp902-911.html
   My bibliography  Save this article

A pressure-based method for monitoring leaks in a pipe distribution system: A Review

Author

Listed:
  • Abdulshaheed, A.
  • Mustapha, F.
  • Ghavamian, A.

Abstract

Leakage from a pipe network possibly poses significant environmental destruction and economic losses due to the release of potential energy. While the pipe network may be planned and constructed to satisfy the requirements of rigorous conditions, it is quite hard to avoid the subsequent appearance of leakages in a pipeline during the system's lifetime. Pressure leak detection enables a fast and reliable action response which is necessary to minimise the damage. Many leak detection approaches have been previously suggested. These methods basically depend on numerical modelling and transient analysis, such as inverse transient analysis, time domain analysis and frequency domain analysis, the negative pressure method, etc. Many methods build upon the analysis of the variation of measured pressure, such as the pressure residual vector method. Hydraulic leak detection has the important advantage of being less costly and has a faster response compared to other leak detection approaches. In this work, various leak detection methods based on pressure are listed and the analysis is reviewed. Both steady state and unsteady state conditions are discussed. The advantages and disadvantages of each approach are mentioned. In addition, methods are included that are suitable for use in both the oil and water industries.

Suggested Citation

  • Abdulshaheed, A. & Mustapha, F. & Ghavamian, A., 2017. "A pressure-based method for monitoring leaks in a pipe distribution system: A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 902-911.
  • Handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:902-911
    DOI: 10.1016/j.rser.2016.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116304373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Haghighi & Helena Ramos, 2012. "Detection of Leakage Freshwater and Friction Factor Calibration in Drinking Networks Using Central Force Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2347-2363, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morales-Hernández, Mario & Playán, Enrique & Gimeno, Yolanda & Serreta, Alfredo & Zapata, Nery, 2018. "Assessing zebra mussel colonization of collective pressurized irrigation networks through pressure measurements and simulations," Agricultural Water Management, Elsevier, vol. 204(C), pages 301-313.
    2. Sajid Ali & Muhammad A. Hawwa & Uthman Baroudi, 2022. "Effect of Leak Geometry on Water Characteristics Inside Pipes," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    3. Morales-Hernández, Mario & Playán, Enrique & Latorre, Borja & Montoya, Francisco & Madurga, Cristina & Sánchez de Rivera, Alejandro & Zapata, Nery, 2022. "Normalized pressure: a key variable to assess zebra mussel infestation in pressurized irrigation networks," Agricultural Water Management, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iman Ahmadianfar & Bijay Halder & Salim Heddam & Leonardo Goliatt & Mou Leong Tan & Zulfaqar Sa’adi & Zainab Al-Khafaji & Raad Z. Homod & Tarik A. Rashid & Zaher Mundher Yaseen, 2023. "An Enhanced Multioperator Runge–Kutta Algorithm for Optimizing Complex Water Engineering Problems," Sustainability, MDPI, vol. 15(3), pages 1-28, January.
    2. Gustavo Meirelles & Daniel Manzi & Bruno Brentan & Thaisa Goulart & Edevar Luvizotto, 2017. "Calibration Model for Water Distribution Network Using Pressures Estimated by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4339-4351, October.
    3. Ali Haghighi, 2015. "Analysis of Transient Flow Caused by Fluctuating Consumptions in Pipe Networks: A Many-Objective Genetic Algorithm Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2233-2248, May.
    4. Huan-Feng Duan, 2015. "Uncertainty Analysis of Transient Flow Modeling and Transient-Based Leak Detection in Elastic Water Pipeline Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5413-5427, November.
    5. Chi Zhang & Martin F. Lambert & Jinzhe Gong & Aaron C. Zecchin & Angus R. Simpson & Mark L. Stephens, 2020. "Bayesian Inverse Transient Analysis for Pipeline Condition Assessment: Parameter Estimation and Uncertainty Quantification," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2807-2820, July.
    6. S.Mahmood Jazayeri Moghaddas & Hossein M.V. Samani, 2017. "Application of Central Force Optimization Method to Design Transient Protection Devices for Water Transmission Pipelines," Modern Applied Science, Canadian Center of Science and Education, vol. 11(3), pages 1-76, March.
    7. Yen-Chen Huang & Chao-Chin Lin & Hund-Der Yeh, 2015. "An Optimization Approach to Leak Detection in Pipe Networks Using Simulated Annealing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4185-4201, September.
    8. Chi Zhang & Jinzhe Gong & Martin F. Lambert & Angus R. Simpson & Aaron C. Zecchin, 2019. "Sensor Placement Strategy for Pipeline Condition Assessment Using Inverse Transient Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2761-2774, June.
    9. Sanghyun Kim, 2019. "Valve Maneuver Prediction in Simple and Complicated Pipeline Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4671-4685, November.
    10. Mansouri, R., 2018. "Economical Optimization of the Pressure Irrigation Networks by using Developed Central Force Optimization Algorithm," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275982, International Association of Agricultural Economists.
    11. Sang Hyun Kim, 2018. "Development of Multiple Leakage Detection Method for a Reservoir Pipeline Valve System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 2099-2112, April.
    12. Sang Hyun Kim, 2017. "Multiple Leakage Function for a Simple Pipeline System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2659-2673, July.
    13. Abbas Al-Omari, 2013. "A Methodology for the Breakdown of NRW into Real and Administrative Losses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1913-1930, May.
    14. Sanghyun Kim, 2016. "Impedance Method for Abnormality Detection of a Branched Pipeline System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1101-1115, February.
    15. Adell Moradi Sabzkouhi & Ali Haghighi, 2018. "Uncertainty Analysis of Transient Flow in Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3853-3870, September.
    16. Sou-Sen Leu & Quang-Nha Bui, 2016. "Leak Prediction Model for Water Distribution Networks Created Using a Bayesian Network Learning Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2719-2733, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:902-911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.