IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224024447.html
   My bibliography  Save this article

Optimizing electric vehicle scheduling strategies for advanced distribution system planning and operation with comprehensive cost-benefit analysis

Author

Listed:
  • Shang, Mengya
  • Zhang, Lin
  • Duan, Hongcheng

Abstract

Electric vehicles (EVs) are a compelling way to advance environmentally sustainable transportation systems, thanks to their potential to significantly reduce carbon emissions. Nevertheless, the seamless integration of EVs into distribution systems is fraught with challenges that require thorough investigation. With the ultimate goal of creating an ideal planning plan, the primary objective of this research is to examine electric vehicle planning strategies (EVPSs) utilizing a thorough cost and benefit analysis technique. Because EVs may operate as both a dispersed energy source and a load, they present the idea of Vehicle-to-Grid (V2G) technology. An EV with V2G technology installed can actively support the distribution system's power needs, particularly in the area of reactive power support. In order to fully benefit from integration of electric vehicles (EVs) into distribution systems, EV charging activities must be coordinated with the concurrent availability of V2G technology. This study involves the implementation of two separate PSs, each of which focuses on specific aspects of distribution system improvement. Active power distribution (APD) and reactive power distribution (RPD) are the two categories into which the strategies are separated. Their shared objective is to reduce system losses by strategically utilizing the V2G technology that is built into electric vehicles. The APD technique is predicated on the idea of minimizing losses by optimizing EV charging and discharging (CDC). On the contrary, strategy based on RPD revolves around minimizing losses through optimal charging of EVs and smart injection of reactive power into the distribution system. In addition, this research presents an in-depth cost-benefit analysis of the developed EVPSs, which provides valuable insights from a planning perspective. Finally, this study assesses how the distribution system's reorganization has improved the system's planning and operation. The effectiveness and resilience of the suggested strategy are convincingly illustrated by simulations conducted on a 33-bus distribution system, which validate these crucial observations.

Suggested Citation

  • Shang, Mengya & Zhang, Lin & Duan, Hongcheng, 2024. "Optimizing electric vehicle scheduling strategies for advanced distribution system planning and operation with comprehensive cost-benefit analysis," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024447
    DOI: 10.1016/j.energy.2024.132670
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gandhi, Oktoviano & Rodríguez-Gallegos, Carlos D. & Zhang, Wenjie & Srinivasan, Dipti & Reindl, Thomas, 2018. "Economic and technical analysis of reactive power provision from distributed energy resources in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 827-841.
    2. Abid, Md. Shadman & Ahshan, Razzaqul & Al Abri, Rashid & Al-Badi, Abdullah & Albadi, Mohammed, 2024. "Techno-economic and environmental assessment of renewable energy sources, virtual synchronous generators, and electric vehicle charging stations in microgrids," Applied Energy, Elsevier, vol. 353(PA).
    3. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    4. Mehta, R. & Verma, P. & Srinivasan, D. & Yang, Jing, 2019. "Double-layered intelligent energy management for optimal integration of plug-in electric vehicles into distribution systems," Applied Energy, Elsevier, vol. 233, pages 146-155.
    5. shafiei, Mohammad & Ghasemi-Marzbali, Ali, 2023. "Electric vehicle fast charging station design by considering probabilistic model of renewable energy source and demand response," Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Bazzi & Hamza El Hafdaoui & Ahmed Khallaayoun & Kedar Mehta & Kamar Ouazzani & Wilfried Zörner, 2023. "Optimization Model of Hybrid Renewable Energy Generation for Electric Bus Charging Stations," Energies, MDPI, vol. 17(1), pages 1-22, December.
    2. Meng, Weiqi & Song, Dongran & Huang, Liansheng & Chen, Xiaojiao & Yang, Jian & Dong, Mi & Talaat, M., 2024. "A Bi-level optimization strategy for electric vehicle retailers based on robust pricing and hybrid demand response," Energy, Elsevier, vol. 289(C).
    3. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    4. Balu, Korra & Mukherjee, V., 2024. "Optimal deployment of electric vehicle charging stations, renewable distributed generation with battery energy storage and distribution static compensator in radial distribution network considering un," Applied Energy, Elsevier, vol. 359(C).
    5. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    6. Changhong Deng & Ning Liang & Jin Tan & Gongchen Wang, 2016. "Multi-Objective Scheduling of Electric Vehicles in Smart Distribution Network," Sustainability, MDPI, vol. 8(12), pages 1-15, November.
    7. Colmenar-Santos, Antonio & Linares-Mena, Ana-Rosa & Borge-Diez, David & Quinto-Alemany, Carlos-Domingo, 2017. "Impact assessment of electric vehicles on islands grids: A case study for Tenerife (Spain)," Energy, Elsevier, vol. 120(C), pages 385-396.
    8. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    9. Alam, Mollah Rezaul & Alam, M.J.E. & Somani, Abhishek & Melton, Ronald B. & Tushar, Wayes & Bai, Feifei & Yan, Ruifeng & Saha, Tapan K., 2021. "Evaluating the feasibility of transactive approach for voltage management using inverters of a PV plant," Applied Energy, Elsevier, vol. 291(C).
    10. Wu, Raphael & Sansavini, Giovanni, 2020. "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids," Applied Energy, Elsevier, vol. 272(C).
    11. Colmenar-Santos, A. & de Palacio-Rodriguez, Carlos & Rosales-Asensio, Enrique & Borge-Diez, David, 2017. "Estimating the benefits of vehicle-to-home in islands: The case of the Canary Islands," Energy, Elsevier, vol. 134(C), pages 311-322.
    12. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    13. Yin, Linfei & Lu, Yuejiang, 2021. "Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources," Energy, Elsevier, vol. 226(C).
    14. Mohamed, Mohamed A. & Tajik, Elham & Awwad, Emad Mahrous & El-Sherbeeny, Ahmed M. & Elmeligy, Mohammed A. & Ali, Ziad M., 2020. "A two-stage stochastic framework for effective management of multiple energy carriers," Energy, Elsevier, vol. 197(C).
    15. Khaki, Behnam & Chu, Chicheng & Gadh, Rajit, 2019. "Hierarchical distributed framework for EV charging scheduling using exchange problem," Applied Energy, Elsevier, vol. 241(C), pages 461-471.
    16. Saša Vlahinić & Dubravko Franković & Vitomir Komen & Anamarija Antonić, 2019. "Reactive Power Compensation with PV Inverters for System Loss Reduction," Energies, MDPI, vol. 12(21), pages 1-17, October.
    17. Tabatabaee, Sajad & Mortazavi, Seyed Saeedallah & Niknam, Taher, 2016. "Stochastic energy management of renewable micro-grids in the correlated environment using unscented transformation," Energy, Elsevier, vol. 109(C), pages 365-377.
    18. Ramos Muñoz, Edgar & Razeghi, Ghazal & Zhang, Li & Jabbari, Faryar, 2016. "Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels," Energy, Elsevier, vol. 113(C), pages 930-942.
    19. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    20. Xu, Jian & Wang, Jing & Liao, Siyang & Sun, Yuanzhang & Ke, Deping & Li, Xiong & Liu, Ji & Jiang, Yibo & Wei, Congying & Tang, Bowen, 2018. "Stochastic multi-objective optimization of photovoltaics integrated three-phase distribution network based on dynamic scenarios," Applied Energy, Elsevier, vol. 231(C), pages 985-996.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.