IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1667-d1060807.html
   My bibliography  Save this article

Optimal Energy Management System of Isolated Multi-Microgrids with Local Energy Transactive Market with Indigenous PV-, Wind-, and Biomass-Based Resources

Author

Listed:
  • Sayyed Ahmad Ali

    (US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan)

  • Arif Hussain

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Seoul 16419, Republic of Korea)

  • Waseem Haider

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Seoul 16419, Republic of Korea)

  • Habib Ur Rehman

    (US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan)

  • Syed Ali Abbas Kazmi

    (US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan)

Abstract

The availability of sustainable, efficient electricity access is critical for rural communities as it can facilitate economic development and improve the quality of life for residents. Isolated microgrids can provide a solution for rural electrification, as they can generate electricity from local renewable energy sources and can operate independently from the central grid. Residential load scheduling is also an important aspect of energy management in isolated microgrids. However, effective management of the microgrid’s energy resources and load scheduling is essential for ensuring the reliability and cost-effectiveness of the system. To cope with the stochastic nature of RERs, the idea of an optimal energy management system (EMS) with a local energy transactive market (LETM) in an isolated multi-microgrid system is proposed in this work. Nature-inspired algorithms such as JAYA (Sanskrit word meaning victory) and teaching–learning based optimization algorithm (TLBO) can get stuck in local optima, thus reducing the effectiveness of EMS. For this purpose, a modified hybrid version of the JAYA and TLBO algorithm, namely, the modified JAYA learning-based optimization (MJLBO), is proposed in this work. The prosumers can sell their surplus power or buy power to meet their load demand from LETM enabling a higher load serving as compared to a single isolated microgrid with multi-objectives, resulting in a reduced electricity bill, increased revenue, peak-average ratio, and user discomfort. The proposed system is evaluated against three other algorithms TLBO, JAYA, and JAYA learning-based optimization (JLBO). The result of this work shows that MJLBO outperforms other algorithms in achieving the best numerical value for all objectives. The simulation results validate that MJLBO achieves a peak-to-average ratio (PAR) reduction of 65.38% while there is a PAR reduction of 51.4%, 52.53%, and 51.2% for TLBO, JLBO, and JAYA as compared to the unscheduled load.

Suggested Citation

  • Sayyed Ahmad Ali & Arif Hussain & Waseem Haider & Habib Ur Rehman & Syed Ali Abbas Kazmi, 2023. "Optimal Energy Management System of Isolated Multi-Microgrids with Local Energy Transactive Market with Indigenous PV-, Wind-, and Biomass-Based Resources," Energies, MDPI, vol. 16(4), pages 1-38, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1667-:d:1060807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gandhi, Oktoviano & Rodríguez-Gallegos, Carlos D. & Zhang, Wenjie & Srinivasan, Dipti & Reindl, Thomas, 2018. "Economic and technical analysis of reactive power provision from distributed energy resources in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 827-841.
    2. Tuomela, Sanna & de Castro Tomé, Mauricio & Iivari, Netta & Svento, Rauli, 2021. "Impacts of home energy management systems on electricity consumption," Applied Energy, Elsevier, vol. 299(C).
    3. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    4. Guodong Li & Yunhe Tian & Min Xie & Ciro Núñez-Gutiérrez, 2022. "Improved Whale Optimization Algorithm and Low-Energy Consumption Design of Circuit Breaker," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silveira, Jose Ronaldo & Brandao, Danilo Iglesias & Fernandes, Nicolas T.D. & Uturbey, Wadaed & Cardoso, Braz, 2021. "Multifunctional dispatchable microgrids," Applied Energy, Elsevier, vol. 282(PA).
    2. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    3. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    4. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    5. Thomas Schmitt & Tobias Rodemann & Jürgen Adamy, 2021. "The Cost of Photovoltaic Forecasting Errors in Microgrid Control with Peak Pricing," Energies, MDPI, vol. 14(9), pages 1-13, April.
    6. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    7. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    8. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    9. Saqib Iqbal & Kamyar Mehran, 2022. "A Day-Ahead Energy Management for Multi MicroGrid System to Optimize the Energy Storage Charge and Grid Dependency—A Comparative Analysis," Energies, MDPI, vol. 15(11), pages 1-19, June.
    10. Mishra, Sakshi & Anderson, Kate & Miller, Brian & Boyer, Kyle & Warren, Adam, 2020. "Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies," Applied Energy, Elsevier, vol. 264(C).
    11. Hong, Bowen & Zhang, Weitong & Zhou, Yue & Chen, Jian & Xiang, Yue & Mu, Yunfei, 2018. "Energy-Internet-oriented microgrid energy management system architecture and its application in China," Applied Energy, Elsevier, vol. 228(C), pages 2153-2164.
    12. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    13. Poolla, Chaitanya & Ishihara, Abraham K. & Milito, Rodolfo, 2019. "Designing near-optimal policies for energy management in a stochastic environment," Applied Energy, Elsevier, vol. 242(C), pages 1725-1737.
    14. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Zia, Muhammad Fahad & Nasir, Mashood & Elbouchikhi, Elhoussin & Benbouzid, Mohamed & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Clarke, Will Challis & Brear, Michael John & Manzie, Chris, 2020. "Control of an isolated microgrid using hierarchical economic model predictive control," Applied Energy, Elsevier, vol. 280(C).
    17. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    18. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    19. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    20. Hanaa Feleafel & Jovana Radulovic & Michel Leseure, 2024. "Should We Have Selfish Microgrids?," Energies, MDPI, vol. 17(16), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1667-:d:1060807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.