IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224023971.html
   My bibliography  Save this article

Investigations on the primary air entrainment and flame stability in a partially submerged combustion-based porous radiant burner

Author

Listed:
  • Deb, Sunita
  • Muthukumar, P.

Abstract

This study delves into the effects of altering the geometrical dimensions of a Self-Aspirated Porous Radiant Burner (SA-PRB) of 5 kW capacity, focusing primarily on the Mixing Tube (MT) and orifice, and their influence on air entrainment and flame stability. To simulate flow and combustion, the study utilized the RNG k-ɛ and Eddy Dissipation Models, respectively, employing a four-step reaction scheme for LPG combustion. Examining various combinations of MT dimensions, orifice sizes, and their positions within the MT, the study scrutinized flame length, heat distribution uniformity, and flashback. Both numerical simulations and experimental observations corroborated the findings, highlighting the significant impact of orifice and MT dimensions on Primary Air Entrainment (PA). Optimal geometrical configurations are identified as crucial for achieving the combustion stability in PRBs. Configurations resulting in unstable PRB operation such as non-uniform temperature distribution, flashback etc., have been discussed. Stable operation is achieved in the partially submerged combustion mode with an optimized setup featuring a 0.3 mm OD orifice positioned 30 mm from the datum, coupled with a 29 mm MTD. This configuration yields a PA of 79 % and a maximum temperature of 979 °C, and demonstrated efficacy of the proposed design in enhancing PRB performance.

Suggested Citation

  • Deb, Sunita & Muthukumar, P., 2024. "Investigations on the primary air entrainment and flame stability in a partially submerged combustion-based porous radiant burner," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023971
    DOI: 10.1016/j.energy.2024.132623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224023971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sutar, Kailasnath B. & M.R., Ravi & Kohli, Sangeeta, 2016. "Design of a partially aerated naturally aspirated burner for producer gas," Energy, Elsevier, vol. 116(P1), pages 773-785.
    2. Muthukumar Palanisamy & Lav Kumar Kaushik & Arun Kumar Mahalingam & Sunita Deb & Pratibha Maurya & Sofia Rani Shaik & Muhammad Abdul Mujeebu, 2023. "Evolutions in Gaseous and Liquid Fuel Cook-Stove Technologies," Energies, MDPI, vol. 16(2), pages 1-37, January.
    3. Namkhat, A. & Jugjai, S., 2010. "Primary air entrainment characteristics for a self-aspirating burner: Model and experiments," Energy, Elsevier, vol. 35(4), pages 1701-1708.
    4. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    5. Yoksenakul, W. & Jugjai, S., 2011. "Design and development of a SPMB (self-aspirating, porous medium burner) with a submerged flame," Energy, Elsevier, vol. 36(5), pages 3092-3100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    2. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
    3. Roberto Moreno-Soriano & Froylan Soriano-Moranchel & Luis Armando Flores-Herrera & Juan Manuel Sandoval-Pineda & Rosa de Guadalupe González-Huerta, 2020. "Thermal Efficiency of Oxyhydrogen Gas Burner," Energies, MDPI, vol. 13(20), pages 1-11, October.
    4. Yuan, Ye & Li, GuoXiu & Sun, ZuoYu & Li, HongMeng & Zhou, ZiHang, 2016. "Experimental study on the dynamical features of a partially premixed methane jet flame in coflow," Energy, Elsevier, vol. 111(C), pages 593-598.
    5. Pahlevaninezhad, Masoud & Davazdah Emami, Mohsen & Panjepour, Masoud, 2014. "The effects of kinetic parameters on combustion characteristics in a sintering bed," Energy, Elsevier, vol. 73(C), pages 160-176.
    6. Deore, Sujeetkumar P. & Gadkari, Prabodh & Mahajani, Sanjay M. & Kumar, Sandeep & Kumar, Sudarshan, 2023. "Development of a new premixed burner for biomass gasifier generated low calorific value producer gas for industrial applications," Energy, Elsevier, vol. 279(C).
    7. Vahidhosseini, Seyed Mohammad & Esfahani, Javad Abolfazli & Kim, Kyung Chun, 2020. "Cylindrical porous radiant burner with internal combustion regime: Energy saving analysis using response surface method," Energy, Elsevier, vol. 207(C).
    8. Kuntikana, Pramod & Prabhu, S.V., 2017. "Thermal investigations on methane-air premixed flame jets of multi-port burners," Energy, Elsevier, vol. 123(C), pages 218-228.
    9. Wei, Depeng & Peng, Qingguo & Yin, Ruixue & Wang, Hao & Tian, Xinghua & Yan, Feng & Fu, Guang, 2024. "Optimizing micro power generation with blended fuels and porous media for H2-fueled combustion," Renewable Energy, Elsevier, vol. 233(C).
    10. Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R., 2023. "Clean cooking with downdraft biomass gasifier cookstove: Effect of gasifier performance," Energy, Elsevier, vol. 263(PA).
    11. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    13. Bakry, Ayman I. & Rabea, Karim & El-Fakharany, Magda, 2020. "Starting up implication of the two-region porous inert medium (PIM) burners," Energy, Elsevier, vol. 201(C).
    14. Wang, Hongmin & Wei, Chunzhi & Zhao, Pinghui & Ye, Taohong, 2014. "Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion," Energy, Elsevier, vol. 72(C), pages 195-200.
    15. Sun, Mengxiao & Huang, Xiaomei & Hu, Yelong & Lyu, Shan, 2022. "Effects on the performance of domestic gas appliances operated on natural gas mixed with hydrogen," Energy, Elsevier, vol. 244(PA).
    16. Sutar, Kailasnath B. & M.R., Ravi & Kohli, Sangeeta, 2016. "Design of a partially aerated naturally aspirated burner for producer gas," Energy, Elsevier, vol. 116(P1), pages 773-785.
    17. E, Jiaqiang & Meng, Tian & Chen, Jingwei & Wu, Weiwei & Zhao, Xiaohuan & Zhang, Bin & Peng, Qingguo, 2021. "Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure," Energy, Elsevier, vol. 230(C).
    18. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    19. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    20. Saberi Moghaddam, Mohammad Hossein & Saei Moghaddam, Mojtaba & Khorramdel, Mohammad, 2017. "Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner," Energy, Elsevier, vol. 125(C), pages 654-662.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.