IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224023326.html
   My bibliography  Save this article

The characteristics and mechanism NO formation during hydroxylated fuels/NH3 oxidation in oxy-fuel atmospheres

Author

Listed:
  • Wu, Qining
  • Sun, Zhijun
  • Liu, Yuejie
  • Li, Haixia
  • Zhang, Anchao

Abstract

Oxy-fuel combustion, as an important technology to realize CCUS in the field of combustion, needs to control the generation of pollutants such as NOx while realizing CO2 capture, and the conversion of fuel-N to N2 is crucial. Previous experiments have provided insights into the influence of different atmospheres on NO during oxy-fuel combustion of alcohols. However, the specific reaction mechanism underlying how the atmosphere and hydroxyl fuels impact NO generation through the free radical pool remains unclear. In this study, the formation and reduction of NO during the oxidation of CH3OH/NH3 and C2H5OH/NH3 in O2/CO2, O2/H2O and O2/CO2/H2O atmospheres with oxy-fuel condition were investigated by simulation. In the NO generation stage, different H2O, CO2, O2 and fuel types have little effect on the peak of NO although they change the NH3→NO reaction path. In the process of NO reduction, stage 1 is the main reaction phase of NO→N2, and both CO2 and H2O are beneficial for the reduction of NO. But the reduction of NO by H2O was more pronounced. In the case of simultaneous addition of H2O and CO2, the reducing effect of H2O and CO2 alone on NO was attenuated. On the other hand, the reduction effect exerted by H2O and CO2 was stronger in high than in low oxygen-fuel ratio, stronger in C2H5OH than in CH3OH. The reduction of NO by H2O and CO2 is based on the general equation NO→N2+O2. H2O is used to promote the reaction in the positive direction by consuming O2 to convert it to H and OH, so that more of the element O is converted to OH than O2 to inhibit the production of NO. The CO2 contributes to the formation of less O2 during the reduction of N2 from NO by promoting reaction NO + N→O + N2, while the additional OH increases the "capacity" of O2 in the NO→N2+O2 reaction.

Suggested Citation

  • Wu, Qining & Sun, Zhijun & Liu, Yuejie & Li, Haixia & Zhang, Anchao, 2024. "The characteristics and mechanism NO formation during hydroxylated fuels/NH3 oxidation in oxy-fuel atmospheres," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023326
    DOI: 10.1016/j.energy.2024.132558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224023326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mardani, A. & Fazlollahi Ghomshi, A., 2016. "Numerical study of oxy-fuel MILD (moderate or intense low-oxygen dilution combustion) combustion for CH4–H2 fuel," Energy, Elsevier, vol. 99(C), pages 136-151.
    2. Wang, B. & Sun, L.S. & Su, S. & Xiang, J. & Hu, S. & Fei, H., 2012. "A kinetic study of NO formation during oxy-fuel combustion of pyridine," Applied Energy, Elsevier, vol. 92(C), pages 361-368.
    3. Luo, Jianghui & Zou, Chun & He, Yizhuo & Jing, Huixiang & Cheng, Sizhe, 2019. "The characteristics and mechanism of NO formation during pyridine oxidation in O2/N2 and O2/CO2 atmospheres," Energy, Elsevier, vol. 187(C).
    4. Liu, Songlin & Fan, Weidong & Guo, Hao & Wu, Xiaofeng & Chen, Jun & Liu, Zhuang & Wang, Xin, 2020. "Relationship between the N2O decomposition and NO formation in H2O/CO2/NH3/NO atmosphere under the conditions of simulated air-staged combustion in the temperature interval of 900–1600 °C," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yizhuo & Zou, Chun & Song, Yu & Luo, Jianghui & Jia, Huiqiao & Chen, Wuzhong & Zheng, Junmei & Zheng, Chuguang, 2017. "Comparison of the characteristics and mechanism of CO formation in O2/N2, O2/CO2 and O2/H2O atmospheres," Energy, Elsevier, vol. 141(C), pages 1429-1438.
    2. Wang, Xuebin & Zhang, Jiaye & Xu, Xinwei & Mikulčić, Hrvoje & Li, Yan & Zhou, Yuegui & Tan, Houzhang, 2020. "Numerical study of biomass Co-firing under Oxy-MILD mode," Renewable Energy, Elsevier, vol. 146(C), pages 2566-2576.
    3. Tian, Ye & Zhou, Xiong & Ji, Xuanyu & Bai, Jisong & Yuan, Liang, 2019. "Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement," Energy, Elsevier, vol. 171(C), pages 149-160.
    4. Jozaalizadeh, Toomaj & Toghraie, Davood, 2019. "Numerical investigation behavior of reacting flow for flameless oxidation technology of MILD combustion: Effect of fluctuating temperature of inlet co-flow," Energy, Elsevier, vol. 178(C), pages 530-537.
    5. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    6. Seong-Jun Yang & Ji-Young Eom & Myung-Jin Lee & Dae-Hwan Hwang & Won-Bin Park & Young-Min Wie & Ki-Gang Lee & Kang-Hoon Lee, 2023. "Comparative Environmental Evaluation of Sewage Sludge Treatment and Aggregate Production Process by Life Cycle Assessment," Sustainability, MDPI, vol. 16(1), pages 1-17, December.
    7. Bui, Van Ga & Tu Bui, Thi Minh & Ong, Hwai Chyuan & Nižetić, Sandro & Bui, Van Hung & Xuan Nguyen, Thi Thanh & Atabani, A.E. & Štěpanec, Libor & Phu Pham, Le Hoang & Hoang, Anh Tuan, 2022. "Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system," Energy, Elsevier, vol. 252(C).
    8. Żukowski, Witold & Jankowski, Dawid & Wrona, Jan & Berkowicz-Płatek, Gabriela, 2023. "Combustion behavior and pollutant emission characteristics of polymers and biomass in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 263(PD).
    9. Bai, Zhongze & Jiang, Xi Zhuo & Luo, Kai H., 2022. "Effects of water on pyridine pyrolysis: A reactive force field molecular dynamics study," Energy, Elsevier, vol. 238(PB).
    10. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    11. Hu, Fan & Li, Pengfei & Guo, Junjun & Liu, Zhaohui & Wang, Lin & Mi, Jianchun & Dally, Bassam & Zheng, Chuguang, 2018. "Global reaction mechanisms for MILD oxy-combustion of methane," Energy, Elsevier, vol. 147(C), pages 839-857.
    12. Woo, Mino & Choi, Byung Chul & Ghoniem, Ahmed F., 2016. "Experimental and numerical studies on NOx emission characteristics in laminar non-premixed jet flames of ammonia-containing methane fuel with oxygen/nitrogen oxidizer," Energy, Elsevier, vol. 114(C), pages 961-972.
    13. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei & Lu, Qinggang, 2017. "The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion," Applied Energy, Elsevier, vol. 190(C), pages 553-562.
    14. Wang, Yi & Cheong, Kin-Pang & Wang, Junyang & Liu, Shaotong & Hu, Yong & Chyu, Minking & Mi, Jianchun, 2024. "Operational condition and furnace geometry for premixed C3H8/Air MILD combustion of high thermal-intensity and low emissions," Energy, Elsevier, vol. 288(C).
    15. Cheong, Kin-Pang & Li, Pengfei & Wang, Feifei & Mi, Jianchun, 2017. "Emissions of NO and CO from counterflow combustion of CH4 under MILD and oxyfuel conditions," Energy, Elsevier, vol. 124(C), pages 652-664.
    16. Liu, Yaming & Chen, Sheng & Liu, Shi & Feng, Yongxin & Xu, Kai & Zheng, Chuguang, 2016. "Methane combustion in various regimes: First and second thermodynamic-law comparison between air-firing and oxyfuel condition," Energy, Elsevier, vol. 115(P1), pages 26-37.
    17. Bao, Yu & Yu, Qingbo & Xie, Huaqing & Qin, Qin & Zhao, Yu, 2023. "Effect of H2 and CO in syngas on oxy-MILD combustion," Applied Energy, Elsevier, vol. 352(C).
    18. Li, Zhiyi & Cuoci, Alberto & Sadiki, Amsini & Parente, Alessandro, 2017. "Comprehensive numerical study of the Adelaide Jet in Hot-Coflow burner by means of RANS and detailed chemistry," Energy, Elsevier, vol. 139(C), pages 555-570.
    19. Liu, Jie & Guo, Qiang & Liang, Wenkai & Feng, Xuning & Wang, Hewu, 2024. "On the NTC behaviors in explosion limits of C1 to C3 n-alkane/air mixtures," Energy, Elsevier, vol. 294(C).
    20. Shi, Guodong & Li, Pengfei & Li, Kesheng & Hu, Fan & Liu, Qian & Zhou, Haoyu & Liu, Zhaohui, 2023. "Insight into NOx formation characteristics of ammonia oxidation in N2 and H2O atmospheres," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.