Deep reinforcement learning with deep-Q-network based energy management for fuel cell hybrid electric truck
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.132531
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ganesh, Akhil Hannegudda & Xu, Bin, 2022. "A review of reinforcement learning based energy management systems for electrified powertrains: Progress, challenge, and potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Renzhi Lyu & Zhenpo Wang & Zhaosheng Zhang, 2024. "Multi-Objective Optimization Strategy for Fuel Cell Hybrid Electric Trucks Based on Driving Patern Recognition," Energies, MDPI, vol. 17(6), pages 1-15, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
- Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
- Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
- Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
- Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
- Ma, Yan & Hu, Fuyuan & Hu, Yunfeng, 2023. "Energy efficiency improvement of intelligent fuel cell/battery hybrid vehicles through an integrated management strategy," Energy, Elsevier, vol. 263(PE).
- Gao, Sichen & Zong, Yuhua & Ju, Fei & Wang, Qun & Huo, Weiwei & Wang, Liangmo & Wang, Tao, 2024. "Scenario-oriented adaptive ECMS using speed prediction for fuel cell vehicles in real-world driving," Energy, Elsevier, vol. 304(C).
- Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
- Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
- Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
- Pang, Kexin & Zhou, Jian & Tsianikas, Stamatis & Coit, David W. & Ma, Yizhong, 2024. "Long-term microgrid expansion planning with resilience and environmental benefits using deep reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Benmouna, A. & Becherif, M. & Boulon, L. & Dépature, C. & Ramadan, Haitham S., 2021. "Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control," Renewable Energy, Elsevier, vol. 178(C), pages 1291-1302.
- Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
- Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
- Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
- Hu, Dong & Huang, Chao & Yin, Guodong & Li, Yangmin & Huang, Yue & Huang, Hailong & Wu, Jingda & Li, Wenfei & Xie, Hui, 2024. "A transfer-based reinforcement learning collaborative energy management strategy for extended-range electric buses with cabin temperature comfort consideration," Energy, Elsevier, vol. 290(C).
- Büyük, Mehmet & İnci, Mustafa, 2023. "Improved drift-free P&O MPPT method to enhance energy harvesting capability for dynamic operating conditions of fuel cells," Energy, Elsevier, vol. 267(C).
- Zhou, Hongxu & Yu, Zhongwei & Wu, Xiaohua & Fan, Zhanfeng & Yin, Xiaofeng & Zhou, Lingxue, 2023. "Dynamic programming improved online fuzzy power distribution in a demonstration fuel cell hybrid bus," Energy, Elsevier, vol. 284(C).
- Hao, Zhaojun & Di Maio, Francesco & Zio, Enrico, 2023. "A sequential decision problem formulation and deep reinforcement learning solution of the optimization of O&M of cyber-physical energy systems (CPESs) for reliable and safe power production and supply," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
More about this item
Keywords
Fuel cell; Dynamic programming; Deep reinforcement learning; Energy management strategy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224023053. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.