IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224021947.html
   My bibliography  Save this article

Direct production of olefins from waste plastic using a pyrolysis and fluid catalytic cracking integrated process: Part 1. study on the production and analysis of waxy oil obtained using a new type of a fluidized bed reactor

Author

Listed:
  • Kim, Jae-Kyung
  • Park, Ki-Bum
  • Kim, Do Kyoung
  • Song, Seung-Ho
  • Kim, Joo-Sik

Abstract

The ultimate aim of this research is to produce ethylene and propylene directly from waste plastic. To achieve this, we designed a new cracker having a fluidized bed reactor (FBR) and a fluid catalytic cracking (FCC) unit. The FBR produces oil in vapor phase, and the FCC unit transforms the vapor into olefins. As a first step toward achieving the research goal, the current study conducts pyrolysis of low-density polyethylene using a new pyrolysis process having a FBR. By understanding characteristics of pyrolysis oils obtained in this study, it becomes possible to determine its suitability as FCC feed and its relationship with olefin productivity. The current investigation focused on the effects of vapor residence time, reaction temperature, and type of fluidizing medium on yield and composition of oil. The results showed that the waxy oil yield depended highly on reaction temperature, reaching a maximum of about 95 wt%. The sum of yields of n-alkenes and n-alkadienes, which are favorable for producing olefins when catalytically cracked in the FCC unit, reached 82 wt%. SIMDIS analysis, which determines the boiling point range distribution of oil, revealed strong effects of reaction temperature and residence time on the carbon numbers of the waxy oil.

Suggested Citation

  • Kim, Jae-Kyung & Park, Ki-Bum & Kim, Do Kyoung & Song, Seung-Ho & Kim, Joo-Sik, 2024. "Direct production of olefins from waste plastic using a pyrolysis and fluid catalytic cracking integrated process: Part 1. study on the production and analysis of waxy oil obtained using a new type of," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021947
    DOI: 10.1016/j.energy.2024.132420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224021947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2019. "Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene," Energy, Elsevier, vol. 166(C), pages 343-351.
    2. Park, Cheolwoong & Kim, Changgi & Lee, Sungwon & Lim, Gihun & Lee, Sunyoup & Choi, Young, 2015. "Effect of control strategy on performance and emissions of natural gas engine for cogeneration system," Energy, Elsevier, vol. 82(C), pages 353-360.
    3. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    4. Duque, João Vitor F. & Martins, Márcio F. & Bittencourt, Flávio L.F. & Debenest, Gérald & Orlando, Marcos Tadeu D. & Profeti, Luciene Paula R. & Profeti, Demetrius, 2023. "Recovering wax from polyethylene waste using C-DPyR," Energy, Elsevier, vol. 272(C).
    5. Sultan Majed Al-Salem & Yang Yang & Jiawei Wang & Gary Anthony Leeke, 2020. "Pyro-Oil and Wax Recovery from Reclaimed Plastic Waste in a Continuous Auger Pyrolysis Reactor," Energies, MDPI, vol. 13(8), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onwuemezie, Linus & Gohari Darabkhani, Hamidreza, 2024. "Oxy-hydrogen, solar and wind assisted hydrogen (H2) recovery from municipal plastic waste (MPW) and saltwater electrolysis for better environmental systems and ocean cleanup," Energy, Elsevier, vol. 301(C).
    2. Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
    3. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    4. Fan, Liangliang & Liu, Lei & Xiao, Zhiguo & Su, Zheyang & Huang, Pei & Peng, Hongyu & Lv, Sen & Jiang, Haiwei & Ruan, Roger & Chen, Paul & Zhou, Wenguang, 2021. "Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5," Energy, Elsevier, vol. 228(C).
    5. Hueon Namkung & Se-In Park & Yoomin Lee & Tae Uk Han & Jun-Ik Son & Jun-Gu Kang, 2022. "Investigation of Oil and Facility Characteristics of Plastic Waste Pyrolysis for the Advanced Waste Recycling Policy," Energies, MDPI, vol. 15(12), pages 1-10, June.
    6. Chen, Chunxiang & Zhao, Jian & Wei, Yixue & Huang, Xiaodong & Lu, Wei & Fan, Dianzhao & Bi, Yingxin & Qiu, Hongfu, 2023. "Influence of graphite/alumina on co-pyrolysis of Chlorella vulgaris and polypropylene for producing bio-oil," Energy, Elsevier, vol. 265(C).
    7. Guzelciftci, Begum & Park, Ki-Bum & Kim, Joo-Sik, 2020. "Production of phenol-rich bio-oil via a two-stage pyrolysis of wood," Energy, Elsevier, vol. 200(C).
    8. Ding, Hongbing & Zhang, Yu & Sun, Chunqian & Yang, Yan & Wen, Chuang, 2022. "Numerical simulation of supersonic condensation flows using Eulerian-Lagrangian and Eulerian wall film models," Energy, Elsevier, vol. 258(C).
    9. Park, Cheolwoong & Kim, Changgi & Lee, Sangho & Lee, Sunyoup & Lee, Janghee, 2019. "Comparative evaluation of performance and emissions of CNG engine for heavy-duty vehicles fueled with various caloric natural gases," Energy, Elsevier, vol. 174(C), pages 1-9.
    10. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    11. Park, Ki-Bum & Jeong, Yong-Seong & Kim, Joo-Sik, 2019. "Activator-assisted pyrolysis of polypropylene," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Li, Jie & Yu, Di & Pan, Lanjia & Xu, Xinhai & Wang, Xiaonan & Wang, Yin, 2023. "Recent advances in plastic waste pyrolysis for liquid fuel production: Critical factors and machine learning applications," Applied Energy, Elsevier, vol. 346(C).
    13. Choudhary, Rajesh & Mukhija, Abhishek & Sharma, Subhash & Choudhary, Rohitash & Chand, Ami & Dewangan, Ashok K. & Gaurav, Gajendra Kumar & Klemeš, Jiří Jaromír, 2023. "Energy-saving COVID–19 biomedical plastic waste treatment using the thermal - Catalytic pyrolysis," Energy, Elsevier, vol. 264(C).
    14. Hannah Jones & Florence Saffar & Vasileios Koutsos & Dipa Ray, 2021. "Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites," Energies, MDPI, vol. 14(21), pages 1-43, November.
    15. Saleh A. AL-Taheri & Ahmed M. Awed & Alaa R. Gabr & Sherif M. El-Badawy, 2023. "Evaluation of Waste Bottle Crates in the Form of Pyro-Oil and Fine Granules as Bitumen Rejuvenators and Modifiers," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    16. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2020. "Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes," Applied Energy, Elsevier, vol. 259(C).
    17. Muhammad Irfan & Rao Adeel Un Nabi & Hammad Hussain & Muhammad Yasin Naz & Shazia Shukrullah & Hassan Abbas Khawaja & Saifur Rahman & Abdulnoor A. J. Ghanim & Izabela Kruszelnicka & Dobrochna Ginter-K, 2022. "Response Surface Methodology Analysis of Pyrolysis Reaction Rate Constants for Predicting Efficient Conversion of Bulk Plastic Waste into Oil and Gaseous Fuels," Energies, MDPI, vol. 15(24), pages 1-17, December.
    18. Khairil & Teuku Meurah Indra Riayatsyah & Samsul Bahri & Sarwo Edhy Sofyan & Jalaluddin Jalaluddin & Fitranto Kusumo & Arridina Susan Silitonga & Yanti Padli & Muhammad Jihad & Abd Halim Shamsuddin, 2020. "Experimental Study on the Performance of an SI Engine Fueled by Waste Plastic Pyrolysis Oil–Gasoline Blends," Energies, MDPI, vol. 13(16), pages 1-15, August.
    19. Wang, Yongli & Huang, Yujing & Wang, Yudong & Zeng, Ming & Yu, Haiyang & Li, Fang & Zhang, Fuli, 2018. "Optimal scheduling of the RIES considering time-based demand response programs with energy price," Energy, Elsevier, vol. 164(C), pages 773-793.
    20. Shooshtari, S.H. Rajaee & Shahsavand, A., 2017. "Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave," Energy, Elsevier, vol. 120(C), pages 153-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.