IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924016039.html
   My bibliography  Save this article

A novel multi-objective generative design approach for sustainable building using multi-task learning (ANN) integration

Author

Listed:
  • Li, Mingchen
  • Wang, Zhe
  • Chang, Hao
  • Wang, Zhoupeng
  • Guo, Juanli

Abstract

Building Performance Optimization (BPO) plays a pivotal role in enhancing building performance, guaranteeing comfort while reducing resource consumption. Existing performance-driven generative design is computational demanding and difficult to be generalized to other similar buildings with difficult to be generalized to other building types or climate conditions. To fill this gap, this paper introduces a novel framework, which integrates multitask learning (MTL), code compliance check, and multi-objective optimization through NSGA-III algorithm. This framework is able to identify Paratoo Optimal design solutions, which comply with building codes, at low computation costs. The framework begins with selecting key design variables that are critical to building energy, comfort performance and life cycle cost. It then employs MTL to enhance the model's accuracy while reducing computational costs. Next, we designed a code compliance checking module followed by the NSGA-III optimization process, with the objective of identifying solutions that comply with existing building codes. The results indicate that the proposed MTL network achieved an R2 score of 0.983–0.993 on the test set. In the particular case study where equal weights are preferred, this approach yielded noteworthy reductions of 27.65%, 19.55%, and 31.13% in Building Energy Consumption (BEC), Life Cycle Cost (LCC), and Residue of continuous Daylight Autonomy (RcDA), respectively, for a rural dwelling, and exclude solutions that fail to satisfy regulatory standards. This framework allows designer to input the weights of each objective based on their preference and can be applied to other building types and climate regions. Last, we develop a solution selection tool based on the results output by the framework we proposed, which can be found at https://github.com/LiMingchen159/Village-House-Design-Strategy-in-Hebei-Province-China.

Suggested Citation

  • Li, Mingchen & Wang, Zhe & Chang, Hao & Wang, Zhoupeng & Guo, Juanli, 2024. "A novel multi-objective generative design approach for sustainable building using multi-task learning (ANN) integration," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016039
    DOI: 10.1016/j.apenergy.2024.124220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García Kerdan, Iván & Morillón Gálvez, David, 2020. "Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building," Applied Energy, Elsevier, vol. 280(C).
    2. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    3. Mavromatidis, Lazaros Elias & Marsault, Xavier & Lequay, Hervé, 2014. "Daylight factor estimation at an early design stage to reduce buildings' energy consumption due to artificial lighting: A numerical approach based on Doehlert and Box–Behnken designs," Energy, Elsevier, vol. 65(C), pages 488-502.
    4. Razmi, Afshin & Rahbar, Morteza & Bemanian, Mohammadreza, 2022. "PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort," Applied Energy, Elsevier, vol. 305(C).
    5. Wu, Di & Zhang, Taoyuan & Zhang, Jiqiang & Lv, Hongyi & Yue, Chao & Fu, Mengze, 2024. "Sensitivity analysis and multiobjective optimization for rural house retrofitting considering construction and occupant behavior uncertainty: A case study of Jiaxian, China," Applied Energy, Elsevier, vol. 360(C).
    6. Evins, Ralph, 2013. "A review of computational optimisation methods applied to sustainable building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 230-245.
    7. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2019. "Data fusion in predicting internal heat gains for office buildings through a deep learning approach," Applied Energy, Elsevier, vol. 240(C), pages 386-398.
    8. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    9. Chen, Xi & Yang, Hongxing & Sun, Ke, 2017. "Developing a meta-model for sensitivity analyses and prediction of building performance for passively designed high-rise residential buildings," Applied Energy, Elsevier, vol. 194(C), pages 422-439.
    10. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    11. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    12. Gramacy, Robert B & Lee, Herbert K. H, 2008. "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1119-1130.
    13. Gao, Hao & Koch, Christian & Wu, Yupeng, 2019. "Building information modelling based building energy modelling: A review," Applied Energy, Elsevier, vol. 238(C), pages 320-343.
    14. Yang, Zheng & Becerik-Gerber, Burcin, 2015. "A model calibration framework for simultaneous multi-level building energy simulation," Applied Energy, Elsevier, vol. 149(C), pages 415-431.
    15. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    16. Park, Cheolwoong & Kim, Changgi & Lee, Sungwon & Lim, Gihun & Lee, Sunyoup & Choi, Young, 2015. "Effect of control strategy on performance and emissions of natural gas engine for cogeneration system," Energy, Elsevier, vol. 82(C), pages 353-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Guo & Shiyu Miao & Sheng Xu & Mingxuan Luo & Jing Dong & Hongchi Zhang, 2024. "Multi-Objective Optimization Design for Cold-Region Office Buildings Balancing Outdoor Thermal Comfort and Building Energy Consumption," Energies, MDPI, vol. 18(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    2. Shaoxiong Li & Le Liu & Changhai Peng, 2020. "A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges," Sustainability, MDPI, vol. 12(4), pages 1-36, February.
    3. Razmi, Afshin & Rahbar, Morteza & Bemanian, Mohammadreza, 2022. "PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort," Applied Energy, Elsevier, vol. 305(C).
    4. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    5. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    6. Cristina Brunelli & Francesco Castellani & Alberto Garinei & Lorenzo Biondi & Marcello Marconi, 2016. "A Procedure to Perform Multi-Objective Optimization for Sustainable Design of Buildings," Energies, MDPI, vol. 9(11), pages 1, November.
    7. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    8. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    9. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    10. Li, Hong Xian & Li, Yan & Jiang, Boya & Zhang, Limao & Wu, Xianguo & Lin, Jingyi, 2020. "Energy performance optimisation of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1414-1423.
    11. Zhan, Jin & He, Wenjing & Huang, Jianxiang, 2024. "Comfort, carbon emissions, and cost of building envelope and photovoltaic arrangement optimization through a two-stage model," Applied Energy, Elsevier, vol. 356(C).
    12. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    13. Tronchin, Lamberto & Manfren, Massimiliano & James, Patrick AB., 2018. "Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building," Energy, Elsevier, vol. 165(PA), pages 26-40.
    14. Harish, V.S.K.V. & Kumar, Arun, 2016. "Reduced order modeling and parameter identification of a building energy system model through an optimization routine," Applied Energy, Elsevier, vol. 162(C), pages 1010-1023.
    15. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Orosz, Matthew & Altes-Buch, Queralt & Mueller, Amy & Lemort, Vincent, 2018. "Experimental validation of an electrical and thermal energy demand model for rapid assessment of rural health centers in sub-Saharan Africa," Applied Energy, Elsevier, vol. 218(C), pages 382-390.
    17. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    18. de Almeida Rocha, Ana Paula & Reynoso-Meza, Gilberto & Oliveira, Ricardo C.L.F. & Mendes, Nathan, 2020. "A pixel counting based method for designing shading devices in buildings considering energy efficiency, daylight use and fading protection," Applied Energy, Elsevier, vol. 262(C).
    19. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    20. Kang, Yiting & Zhang, Dongjie & Cui, Yu & Xu, Wei & Lu, Shilei & Wu, Jianlin & Hu, Yiqun, 2024. "Integrated passive design method optimized for carbon emissions, economics, and thermal comfort of zero-carbon buildings," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.