IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224020218.html
   My bibliography  Save this article

Wellbore salt-deposition risk prediction of underground gas storage combining numerical modeling and machine learning methodology

Author

Listed:
  • He, Zhiyue
  • Tang, Yong
  • He, Youwei
  • Qin, Jiazheng
  • Hu, Shilai
  • Yan, Bicheng
  • Tang, Liangrui
  • Sepehrnoori, Kamy
  • Rui, Zhenhua

Abstract

Strengthening the construction of underground gas storage (UGS) is significant for securing national energy and achieving carbon neutrality. However, salt deposition occurs in the wellbore affecting the safety of UGS seriously. How to predict the salt-deposition risk in UGS wells accurately and quickly is still challenging. This work aims at establishing a fast and convenient framework of wellbore salt-deposition risk prediction in UGS wells. Firstly, the influence of the production parameters on wellbore salt-deposition is analyzed by an in-house simulator. Further, an intelligent diagnostic model of salt-deposition risk is proposed based on the machine learning algorithm. The effect of salt deposition on reservoir is analyzed by reservoir salt-deposition simulation model. Finally, downhole video survey is used to validate the modeling accuracy of diagnostic model. Results indicate that the contribution ratio of daily gas production and water-gas-ratio to wellbore salt deposition is 3:2. After the salt deposition, the reduction in water saturation and the permeability of near wellbore areas are 77.14 % and 98.91 %. The modeling accuracy of diagnostic model is 97 %, which is applied in the Y UGS successfully. The proposed framework can predict the salt-deposition risk of UGS wells in real time to help engineers control salt clogging issues.

Suggested Citation

  • He, Zhiyue & Tang, Yong & He, Youwei & Qin, Jiazheng & Hu, Shilai & Yan, Bicheng & Tang, Liangrui & Sepehrnoori, Kamy & Rui, Zhenhua, 2024. "Wellbore salt-deposition risk prediction of underground gas storage combining numerical modeling and machine learning methodology," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020218
    DOI: 10.1016/j.energy.2024.132247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.