IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224017973.html
   My bibliography  Save this article

Analysis of the role of hydrogen energy in achieving carbon neutrality by 2050: A case study of the Republic of Korea

Author

Listed:
  • Lee, Hwarang
  • Ahn, Jiseok
  • Choi, Dong Gu
  • Park, Sang Yong

Abstract

The importance of achieving carbon neutrality by 2050 to combat climate change is widely recognized, leading to the proposal of various net-zero scenarios using energy system models. In these scenarios, hydrogen energy is often considered as a primary mitigation option alongside renewables. However, uncertainties surrounding hydrogen technologies prevent a comprehensive analysis of its role in achieving carbon neutrality. This study focuses on examining the impact of hydrogen energy demand, supply methods, and technology levels on carbon neutrality in the Republic of Korea using an energy system model. Findings suggest that hydrogen energy could constitute a significant portion of energy supply and demand by 2050. Sensitivity analyses reveal that reducing hydrogen imports could increase domestic power demand, while improving electrolysis efficiency could lead to more efficient carbon neutrality. Additionally, employing carbon capture technologies in hydrogen production rather than power generation is deemed effective. In conclusion, while hydrogen is a main reduction option for carbon neutrality, the effective utilization of hydrogen requires an increased reliance on imported hydrogen, further technology development including improved electrolysis efficiency and increased dissemination of reforming technologies with carbon capture, and the establishment of appropriate utilization strategies.

Suggested Citation

  • Lee, Hwarang & Ahn, Jiseok & Choi, Dong Gu & Park, Sang Yong, 2024. "Analysis of the role of hydrogen energy in achieving carbon neutrality by 2050: A case study of the Republic of Korea," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224017973
    DOI: 10.1016/j.energy.2024.132023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozoliņa, Signe Allena & Pakere, Ieva & Jaunzems, Dzintars & Blumberga, Andra & Grāvelsiņš, Armands & Dubrovskis, Dagnis & Daģis, Salvis, 2022. "Can energy sector reach carbon neutrality with biomass limitations?," Energy, Elsevier, vol. 249(C).
    2. Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2024. "Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol and green hydrogen in a carbon-neutral context," Energy, Elsevier, vol. 290(C).
    3. Luo, Shihua & Hu, Weihao & Liu, Wen & Xu, Xiao & Huang, Qi & Chen, Zhe & Lund, Henrik, 2021. "Transition pathways towards a deep decarbonization energy system—A case study in Sichuan, China," Applied Energy, Elsevier, vol. 302(C).
    4. Zhou, Wenji & Hagos, Dejene Assefa & Stikbakke, Sverre & Huang, Lizhen & Cheng, Xu & Onstein, Erling, 2022. "Assessment of the impacts of different policy instruments on achieving the deep decarbonization targets of island energy systems in Norway – The case of Hinnøya," Energy, Elsevier, vol. 246(C).
    5. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    6. Skov, Iva Ridjan & Schneider, Noémi, 2022. "Incentive structures for power-to-X and e-fuel pathways for transport in EU and member states," Energy Policy, Elsevier, vol. 168(C).
    7. ben Brahim, Till & Wiese, Frauke & Münster, Marie, 2019. "Pathways to climate-neutral shipping: A Danish case study," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    3. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).
    4. Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
    5. Liu, Yingying & Chen, Sha & Jiang, Kejun & Kaghembega, Wendkuuni Steve-Harold, 2022. "The gaps and pathways to carbon neutrality for different type cities in China," Energy, Elsevier, vol. 244(PA).
    6. Azrudin Husika & Nurin Zecevic & Ilham Numic & Ejub Dzaferovic, 2022. "Scenario Analysis of a Coal Reduction Share in the Power Generation in Bosnia and Herzegovina until 2050," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    7. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Yao Li & Liulin Yang & Tianlu Luo, 2023. "Energy System Low-Carbon Transition under Dual-Carbon Goals: The Case of Guangxi, China Using the EnergyPLAN Tool," Energies, MDPI, vol. 16(8), pages 1-16, April.
    9. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    10. Niu, Wente & Lu, Jialiang & Sun, Yuping & Zhang, Xiaowei & Li, Qiaojing & Cao, Xu & Liang, Pingping & Zhan, Hongming, 2024. "Techno-economic integration evaluation in shale gas development based on ensemble learning," Applied Energy, Elsevier, vol. 357(C).
    11. Hu, Tao & Zhang, Jun & Su, Liangbin & Wang, Gang & Yu, Wan & Su, Huashan & Xiao, Renzheng, 2024. "Performance optimization and techno-economic analysis of a novel geothermal system," Energy, Elsevier, vol. 301(C).
    12. Tilsted, Joachim Peter & Bjørn, Anders & Majeau-Bettez, Guillaume & Lund, Jens Friis, 2021. "Accounting matters: Revisiting claims of decoupling and genuine green growth in Nordic countries," Ecological Economics, Elsevier, vol. 187(C).
    13. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    14. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    15. Alam Md Moshiul & Roslina Mohammad & Fariha Anjum Hira & Nurazean Maarop, 2022. "Alternative Marine Fuel Research Advances and Future Trends: A Bibliometric Knowledge Mapping Approach," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    16. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    17. Slimane Smouh & Fatima Zohra Gargab & Badr Ouhammou & Abdel Ali Mana & Rachid Saadani & Abdelmajid Jamil, 2022. "A New Approach to Energy Transition in Morocco for Low Carbon and Sustainable Industry (Case of Textile Sector)," Energies, MDPI, vol. 15(10), pages 1-26, May.
    18. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan, 2024. "Seasonal thermal energy storage employing solar heat: A case study of Heilongjiang, China, exploring the transition to clean heating and renewable power integration," Energy, Elsevier, vol. 305(C).
    19. Xinjia Gao & Aoshuang Zhu & Qifeng Yu, 2023. "Exploring the Carbon Abatement Strategies in Shipping Using System Dynamics Approach," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    20. Chie Hoon Song, 2023. "Examining the Patent Landscape of E-Fuel Technology," Energies, MDPI, vol. 16(5), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224017973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.