IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13751-d951404.html
   My bibliography  Save this article

Scenario Analysis of a Coal Reduction Share in the Power Generation in Bosnia and Herzegovina until 2050

Author

Listed:
  • Azrudin Husika

    (Mechanical Engineering Faculty, University of Sarajevo, 71 000 Sarajevo, Bosnia and Herzegovina)

  • Nurin Zecevic

    (Mechanical Engineering Faculty, University of Sarajevo, 71 000 Sarajevo, Bosnia and Herzegovina)

  • Ilham Numic

    (Mechanical Engineering Faculty, University of Sarajevo, 71 000 Sarajevo, Bosnia and Herzegovina)

  • Ejub Dzaferovic

    (Mechanical Engineering Faculty, University of Sarajevo, 71 000 Sarajevo, Bosnia and Herzegovina)

Abstract

This paper is effectively a scenario analysis of the energy system of Bosnia and Herzegovina (BiH) from the perspective of the possible future reduction of greenhouse gas (GHG) emissions in the power generation sector, with the aim to become climate neutral by 2050, in compliance with the Green Agenda for the Western Balkan. According to the data from 2016, the share of power generation in the total GHG emissions in BiH was approximately 50%. By using the LEAP (Long-range Energy Alternatives Planning) energy model, two scenarios—the “gradual transition scenario” and the “climate neutral” scenario—have been analyzed for the period 2018–2050, and each scenario included decarbonization measures such as the extensive use of Renewable Energy Sources (RES). Unlike the climate neutral scenario, the gradual transition scenario includes the replacement of certain parts of the old, currently-in-operation Coal-fired Power Plants (CFPPs) with the new CFPP, which is more efficient. In the climate-neutral scenario, that part of the existing CFPPs is replaced by a mix of RESs. The results from the first scenario suggest that the share of CFPPs in electricity generation has gradually decreased from 69.3% to 16.3% in 2050, and CO 2 emissions from the power generation sector in 2050 will be 2.2 million tons—roughly 83.5% less than in 2014. According to the second scenario, the emphasis is strongly on the growth and promotion of RESs, which have significantly taken over the roles of major producers of electricity, encouraging the low-carbon development of BiH. Analysis results show that, in 2050, there will be no CO 2 emissions from power generation. It can be concluded that specifically designed energy models for the optimization of capacities and CO 2 emissions through convergence towards RESs could be an optimistic and promising option for BiH to become climate neutral while meeting increasing energy demands. The results show the required RES capacities needed for achieving climate-neutral power generation by 2050, with the current rate level of power generation. Based on the results, RES investment needs can be estimated. Overall, the results of the scenarios can be used for the strategic planning of the power generation sector in BiH until 2050.

Suggested Citation

  • Azrudin Husika & Nurin Zecevic & Ilham Numic & Ejub Dzaferovic, 2022. "Scenario Analysis of a Coal Reduction Share in the Power Generation in Bosnia and Herzegovina until 2050," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13751-:d:951404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ozoliņa, Signe Allena & Pakere, Ieva & Jaunzems, Dzintars & Blumberga, Andra & Grāvelsiņš, Armands & Dubrovskis, Dagnis & Daģis, Salvis, 2022. "Can energy sector reach carbon neutrality with biomass limitations?," Energy, Elsevier, vol. 249(C).
    2. Andrea M. Bassi & Valeria Costantini & Elena Paglialunga, 2021. "Modelling the European Union Sustainability Transition: A Soft-Linking Approach," Sustainability, MDPI, vol. 13(11), pages 1-24, June.
    3. George Halkos & Nickolaos Tzeremes & Panayiotis Tzeremes, 2015. "A nonparametric approach for evaluating long-term energy policy scenarios: an application to the Greek energy system," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-14, December.
    4. Di Leo, Senatro & Pietrapertosa, Filomena & Salvia, Monica & Cosmi, Carmelina, 2021. "Contribution of the Basilicata region to decarbonisation of the energy system: results of a scenario analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Jan L. Bednarczyk & Katarzyna Brzozowska-Rup & Sławomir Luściński, 2021. "Determinants of the Energy Development Based on Renewable Energy Sources in Poland," Energies, MDPI, vol. 14(20), pages 1-21, October.
    6. Georg Zachmann & Franziska Holz & Alexander Roth & Ben McWilliams & Robin Sogalla & Frank Meissner & Claudia Kemfert, 2021. "Decarbonisation of Energy: Determining a Robust Mix of Energy Carriers for a Carbon-Neutral EU," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 127, number pbk175, April.
    7. Melania-Gabriela Ciot, 2021. "On European Green Deal and Sustainable Development Policy (the Case of Romania)," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    8. Nela Vlahinić Lenz & Barbara Fajdetić, 2021. "Globalization and GHG Emissions in the EU: Do We Need a New Development Paradigm?," Sustainability, MDPI, vol. 13(17), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Piotr Sulewski & Wiktor Ignaciuk & Magdalena Szymańska & Adam Wąs, 2023. "Development of the Biomethane Market in Europe," Energies, MDPI, vol. 16(4), pages 1-34, February.
    3. Adrian Ioan Felea & Ioan Felea & Calin Radu Hoble, 2023. "Multicriteria Quantification of the Compatibility of the Targets from Romania’s Relevant Strategies with the European Green Deal," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    4. Ana Mafalda Matos & João M. P. Q. Delgado & Ana Sofia Guimarães, 2022. "Energy-Efficiency Passive Strategies for Mediterranean Climate: An Overview," Energies, MDPI, vol. 15(7), pages 1-20, April.
    5. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    6. Nurkhat Zhakiyev & Ayagoz Khamzina & Svetlana Zhakiyeva & Rocco De Miglio & Aidyn Bakdolotov & Carmelina Cosmi, 2023. "Optimization Modelling of the Decarbonization Scenario of the Total Energy System of Kazakhstan until 2060," Energies, MDPI, vol. 16(13), pages 1-14, July.
    7. Weiwei Chen & Yibo Wang & Jia Zhang & Wei Dou & Yaxuan Jiao, 2022. "Planning and Energy–Economy–Environment–Security Evaluation Methods for Municipal Energy Systems in China under Targets of Peak Carbon Emissions and Carbon Neutrality," Energies, MDPI, vol. 15(19), pages 1-20, October.
    8. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo & Managi, Shunsuke, 2019. "Energy transition, poverty and inequality in Vietnam," Energy Policy, Elsevier, vol. 132(C), pages 536-548.
    9. Hatem Hatef Abdulkadhim Altaee & Saya Jamal Azeez, 2023. "Impacts of Environment-Related Technology, Structural Change, and Globalization on Greenhouse Gas Emissions: Evidence from Top Twenty Emitter Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 690-697, November.
    10. Serenella Caravella & Valeria Costantini & Francesco Crespi, 2021. "Mission-Oriented Policies and Technological Sovereignty: The Case of Climate Mitigation Technologies," Energies, MDPI, vol. 14(20), pages 1-16, October.
    11. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo, 2019. "Energy transition, poverty and inequality: panel evidence from Vietnam," MPRA Paper 107182, University Library of Munich, Germany, revised 10 May 2019.
    12. Donato Morea & Lucilla Bittucci & Arturo Cafaro & Fabiomassimo Mango & Pina Murè, 2021. "Can the Current State Support Mechanisms Help the Growth of Renewable Energies in Wind Markets?," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    13. Melania-Gabriela Ciot, 2022. "Implementation Perspectives for the European Green Deal in Central and Eastern Europe," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    14. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    15. Anna Adamik & Michał Nowicki & Andrius Puksas, 2022. "Energy Oriented Concepts and Other SMART WORLD Trends as Game Changers of Co-Production—Reality or Future?," Energies, MDPI, vol. 15(11), pages 1-38, June.
    16. Péter Faragó & Krisztina Gálos & Dávid Fekete, 2022. "Elements of Divergence in Urbanization between Central and Eastern Europe (CEE) and the Core of the Continent," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    17. Zeng, Qingshun & Shi, Changfeng & Zhu, Wenjun & Zhi, Jiaqi & Na, Xiaohong, 2023. "Sequential data-driven carbon peaking path simulation research of the Yangtze River Delta urban agglomeration based on semantic mining and heuristic algorithm optimization," Energy, Elsevier, vol. 285(C).
    18. Halkos, George & Tzeremes, Panagiotis, 2015. "Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system," MPRA Paper 65280, University Library of Munich, Germany.
    19. Stanisław Jaworski & Mariola Chrzanowska & Monika Zielińska-Sitkiewicz & Robert Pietrzykowski & Aleksandra Jezierska-Thöle & Piotr Zielonka, 2023. "Evaluating the Progress of Renewable Energy Sources in Poland: A Multidimensional Analysis," Energies, MDPI, vol. 16(18), pages 1-21, September.
    20. Niu, Wente & Lu, Jialiang & Sun, Yuping & Zhang, Xiaowei & Li, Qiaojing & Cao, Xu & Liang, Pingping & Zhan, Hongming, 2024. "Techno-economic integration evaluation in shale gas development based on ensemble learning," Applied Energy, Elsevier, vol. 357(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13751-:d:951404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.