IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015548.html
   My bibliography  Save this article

Intersection eco-driving for automated vehicles: SMPC-based strategies for handling leading vehicle starting-up uncertainties

Author

Listed:
  • Li, Daofei
  • Jiang, Yangye
  • Shen, Yijie

Abstract

Driving at intersections often differs from regular car-following scenarios, particularly in terms of start-up speed uncertainties. Extracting useful information from these uncertainties is crucial for improving traffic and energy efficiency, ultimately achieving eco-driving goals for automated vehicles. However, traditional car-following models are inadequate for describing intersection driving behaviors, while current eco-driving strategies often lack a thorough consideration of intersection traffic uncertainties. To this end, a new eco-driving strategy based on stochastic model predictive control (SMPC) is proposed, specifically addressing uncertainties in the starting-up behavior of leading vehicle (LV). To begin, a naturalistic driving dataset is constructed for a queuing scenario at a signalized intersection, enabling the establishment of probabilistic models for LV starting-up behavior. Next, an SMPC-based motion planning algorithm is introduced to facilitate optimal control of the ego vehicle (EV), directly incorporating the LV’s uncertainties. Specifically, a phantom LV model is introduced to depict LV’s starting-up probability in its initial preparing stage, and then in the accelerating stage a gaussian process regression (GPR) approach is employed for more accurate prediction of LV acceleration. Then the algorithm’s effectiveness is validated through stochastic and playback simulations in SUMO and Matlab. The playback simulations using conditions from naturalistic driving demonstrate that the algorithm significantly enhances energy efficiency, achieving savings of 21% and 37% compared to electric and fueled vehicles in real-world scenarios, respectively. Surprisingly, despite expectations, the algorithm can also improve traffic efficiency by an average of 17.9% and 13.6% for electric and fueled vehicles, respectively. Finally, the road experiment validates that our algorithm can achieve total savings of 15.8% energy in our experimental electric vehicle compared to real drivers. This algorithm has the potential to serve as an effective eco-driving solution for automated vehicle longitudinal planning and control in urban settings.

Suggested Citation

  • Li, Daofei & Jiang, Yangye & Shen, Yijie, 2024. "Intersection eco-driving for automated vehicles: SMPC-based strategies for handling leading vehicle starting-up uncertainties," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015548
    DOI: 10.1016/j.energy.2024.131781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jie & Fotouhi, Abbas & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2024. "Review on eco-driving control for connected and automated vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Dong, Haoxuan & Zhuang, Weichao & Chen, Boli & Wang, Yan & Lu, Yanbo & Liu, Ying & Xu, Liwei & Yin, Guodong, 2022. "A comparative study of energy-efficient driving strategy for connected internal combustion engine and electric vehicles at signalized intersections," Applied Energy, Elsevier, vol. 310(C).
    3. Sun, Chao & Zhang, Chuntao & Sun, Fengchun & Zhou, Xingyu, 2022. "Stochastic co-optimization of speed planning and powertrain control with dynamic probabilistic constraints for safe and ecological driving," Applied Energy, Elsevier, vol. 325(C).
    4. Chen, Zheng & Wu, Simin & Shen, Shiquan & Liu, Yonggang & Guo, Fengxiang & Zhang, Yuanjian, 2023. "Co-optimization of velocity planning and energy management for autonomous plug-in hybrid electric vehicles in urban driving scenarios," Energy, Elsevier, vol. 263(PF).
    5. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Xiang, Changle & Li, Xunming, 2022. "Real-time energy-saving control for HEVs in car-following scenario with a double explicit MPC approach," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Yu, Xiao & Lin, Cheng & Tian, Yu & Zhao, Mingjie & Liu, Huimin & Xie, Peng & Zhang, JunZhi, 2023. "Real-time and hierarchical energy management-control framework for electric vehicles with dual-motor powertrain system," Energy, Elsevier, vol. 272(C).
    3. Gao, Kai & Luo, Pan & Xie, Jin & Chen, Bin & Wu, Yue & Du, Ronghua, 2023. "Energy management of plug-in hybrid electric vehicles based on speed prediction fused driving intention and LIDAR," Energy, Elsevier, vol. 284(C).
    4. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    5. Li, Jie & Fotouhi, Abbas & Pan, Wenjun & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2023. "Deep reinforcement learning-based eco-driving control for connected electric vehicles at signalized intersections considering traffic uncertainties," Energy, Elsevier, vol. 279(C).
    6. Hou, Shengyan & Yin, Hai & Xu, Fuguo & Benjamín, Pla & Gao, Jinwu & Chen, Hong, 2023. "Multihorizon predictive energy optimization and lifetime management for connected fuel cell electric vehicles," Energy, Elsevier, vol. 266(C).
    7. Li, Jie & Wu, Xiaodong & Fan, Jiawei & Liu, Yonggang & Xu, Min, 2023. "Overcoming driving challenges in complex urban traffic: A multi-objective eco-driving strategy via safety model based reinforcement learning," Energy, Elsevier, vol. 284(C).
    8. Hongtu Yang & Yan Sun & Changgao Xia & Hongdang Zhang, 2022. "Research on Energy Management Strategy of Fuel Cell Electric Tractor Based on Multi-Algorithm Fusion and Optimization," Energies, MDPI, vol. 15(17), pages 1-15, September.
    9. Chengqun, Qiu & Wan, Xinshan & Wang, Na & Cao, Sunjia & Ji, Xinchen & Wu, Kun & Hu, Yaoyu & Meng, Mingyu, 2023. "A novel regenerative braking energy recuperation system for electric vehicles based on driving style," Energy, Elsevier, vol. 283(C).
    10. Benaitier, Alexis & Krainer, Ferdinand & Jakubek, Stefan & Hametner, Christoph, 2023. "Optimal energy management of hybrid electric vehicles considering pollutant emissions during transient operations," Applied Energy, Elsevier, vol. 344(C).
    11. Chen, Bin & Wang, Miaoben & Hu, Lin & He, Guo & Yan, Haoyang & Wen, Xinji & Du, Ronghua, 2024. "Data-driven Koopman model predictive control for hybrid energy storage system of electric vehicles under vehicle-following scenarios," Applied Energy, Elsevier, vol. 365(C).
    12. Zhang, Yahui & Wei, Zeyi & Wang, Zhong & Tian, Yang & Wang, Jizhe & Tian, Zhikun & Xu, Fuguo & Jiao, Xiaohong & Li, Liang & Wen, Guilin, 2024. "Hierarchical eco-driving control strategy for connected automated fuel cell hybrid vehicles and scenario-/hardware-in-the loop validation," Energy, Elsevier, vol. 292(C).
    13. Li, Jie & Fotouhi, Abbas & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2024. "Review on eco-driving control for connected and automated vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Ma, Yan & Ma, Qian & Liu, Yongqin & Gao, Jinwu & Chen, Hong, 2024. "Two-level optimization strategy for vehicle speed and battery thermal management in connected and automated EVs," Applied Energy, Elsevier, vol. 361(C).
    15. Yiwen Zhou & Fengxiang Guo & Simin Wu & Wenyao He & Xuefei Xiong & Zheng Chen & Dingan Ni, 2022. "Safety and Economic Evaluations of Electric Public Buses Based on Driving Behavior," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    16. Zhou, Xingyu & Sun, Chao & Sun, Fengchun & Zhang, Chuntao, 2023. "Commuting-pattern-oriented stochastic optimization of electric powertrains for revealing contributions of topology modifications to the powertrain energy efficiency," Applied Energy, Elsevier, vol. 344(C).
    17. Jing, Hang & Li, Yan & Brandsema, Matthew J. & Chen, Yousu & Yue, Meng, 2024. "HHL algorithm with mapping function and enhanced sampling for model predictive control in microgrids," Applied Energy, Elsevier, vol. 361(C).
    18. Xiaoping Li & Junming Zhou & Wei Guan & Feng Jiang & Guangming Xie & Chunfeng Wang & Weiguang Zheng & Zhijie Fang, 2023. "Optimization of Brake Feedback Efficiency for Small Pure Electric Vehicles Based on Multiple Constraints," Energies, MDPI, vol. 16(18), pages 1-20, September.
    19. Zhang, Chuntao & Huang, Wenhui & Zhou, Xingyu & Lv, Chen & Sun, Chao, 2024. "Expert-demonstration-augmented reinforcement learning for lane-change-aware eco-driving traversing consecutive traffic lights," Energy, Elsevier, vol. 286(C).
    20. Wang, Yong & Wu, Yuankai & Tang, Yingjuan & Li, Qin & He, Hongwen, 2023. "Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 332(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.