IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1432-d750586.html
   My bibliography  Save this article

A Hybrid Approach in Design of Building Energy Management System with Smart Readiness Indicator and Building as a Service Concept

Author

Listed:
  • Andrzej Ożadowicz

    (Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

Improving energy efficiency and increasing the level of intelligence are two main factors determining the current development trends for new and modernized buildings. They are especially important in the perspective of development of prosumer installations and local microgrids. A key tool to achieve these goals is a well-designed and implemented Building Automation and Control System (BACS). This paper presents a new hybrid approach to the design and technical organization of BACS based on the provisions of the EN 15232 standard and the guidelines of the Smart Readiness Indicator (SRI) defined in the Energy Performance of Buildings Directive 2018 (EPBD 2018). The main assumptions of this hybrid approach along with examples of functional BACS designs for small prosumer installations organized according to them are provided. Potential impact on building energy performance is discussed as well. Finally, a SWOT analysis of the possibility of merging the EN 15232 standard guidelines and the SRI assessment methodology to develop uniform technical guidelines for the BACS functions design and evaluation of their impact on the buildings’ energy efficiency are discussed.

Suggested Citation

  • Andrzej Ożadowicz, 2022. "A Hybrid Approach in Design of Building Energy Management System with Smart Readiness Indicator and Building as a Service Concept," Energies, MDPI, vol. 15(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1432-:d:750586
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    2. Ning Wang & Weisheng Xu & Zhiyu Xu & Weihui Shao, 2018. "Peer-to-Peer Energy Trading among Microgrids with Multidimensional Willingness," Energies, MDPI, vol. 11(12), pages 1-22, November.
    3. Francesco Mancini & Gianluigi Lo Basso & Livio de Santoli, 2019. "Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy Performance and Flexibility," Energies, MDPI, vol. 12(15), pages 1-21, July.
    4. Paris A. Fokaides & Christiana Panteli & Andri Panayidou, 2020. "How Are the Smart Readiness Indicators Expected to Affect the Energy Performance of Buildings: First Evidence and Perspectives," Sustainability, MDPI, vol. 12(22), pages 1-12, November.
    5. Aniela Kaminska & Andrzej Ożadowicz, 2018. "Lighting Control Including Daylight and Energy Efficiency Improvements Analysis," Energies, MDPI, vol. 11(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    2. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    3. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    4. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    5. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    6. Ning Wang & Weisheng Xu & Weihui Shao & Zhiyu Xu, 2019. "A Q-Cube Framework of Reinforcement Learning Algorithm for Continuous Double Auction among Microgrids," Energies, MDPI, vol. 12(15), pages 1-26, July.
    7. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    8. Jicheng Liu & Fangqiu Xu & Shuaishuai Lin & Hua Cai & Suli Yan, 2018. "A Multi-Agent-Based Optimization Model for Microgrid Operation Using Dynamic Guiding Chaotic Search Particle Swarm Optimization," Energies, MDPI, vol. 11(12), pages 1-22, November.
    9. Ji-Won Lee & Mun-Kyeom Kim & Hyung-Joon Kim, 2021. "A Multi-Agent Based Optimization Model for Microgrid Operation with Hybrid Method Using Game Theory Strategy," Energies, MDPI, vol. 14(3), pages 1-21, January.
    10. Laura Canale & Marianna De Monaco & Biagio Di Pietra & Giovanni Puglisi & Giorgio Ficco & Ilaria Bertini & Marco Dell’Isola, 2021. "Estimating the Smart Readiness Indicator in the Italian Residential Building Stock in Different Scenarios," Energies, MDPI, vol. 14(20), pages 1-19, October.
    11. Chun Xia-Bauer & Florin Vondung & Stefan Thomas & Raphael Moser, 2022. "Business Model Innovations for Renewable Energy Prosumer Development in Germany," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    12. Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
    13. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    14. Yaxin Tan & Zhiyu Xu & Weisheng Xu, 2022. "A Two-Phase Hybrid Trading of Green Certificate under Renewables Portfolio Standards in Community of Active Energy Agents," Energies, MDPI, vol. 15(19), pages 1-17, September.
    15. Enrique Cano-Suñén & Ignacio Martínez & Ángel Fernández & Belén Zalba & Roberto Casas, 2023. "Internet of Things (IoT) in Buildings: A Learning Factory," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    16. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    17. Heangwoo Lee & Chang-ho Choi & Minki Sung, 2018. "Development of a Dimming Lighting Control System Using General Illumination and Location-Awareness Technology," Energies, MDPI, vol. 11(11), pages 1-19, November.
    18. Aniela Kaminska, 2020. "Impact of Building Orientation on Daylight Availability and Energy Savings Potential in an Academic Classroom," Energies, MDPI, vol. 13(18), pages 1-17, September.
    19. Francesco Mancini & Benedetto Nastasi, 2020. "Solar Energy Data Analytics: PV Deployment and Land Use," Energies, MDPI, vol. 13(2), pages 1-18, January.
    20. Jin-Gyeom Kim & Bowon Lee, 2020. "Automatic P2P Energy Trading Model Based on Reinforcement Learning Using Long Short-Term Delayed Reward," Energies, MDPI, vol. 13(20), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1432-:d:750586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.