Techno-economic assessment and operational CO2 emissions of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) using demand-driven and subsurface-constrained dimensioning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.123682
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
- Daniilidis, Alexandros & Alpsoy, Betül & Herber, Rien, 2017. "Impact of technical and economic uncertainties on the economic performance of a deep geothermal heat system," Renewable Energy, Elsevier, vol. 114(PB), pages 805-816.
- Lu, Hongwei & Tian, Peipei & Guan, Yanlong & Yu, Sen, 2019. "Integrated suitability, vulnerability and sustainability indicators for assessing the global potential of aquifer thermal energy storage," Applied Energy, Elsevier, vol. 239(C), pages 747-756.
- Narula, Kapil & De Oliveira Filho, Fleury & Chambers, Jonathan & Romano, Elliot & Hollmuller, Pierre & Patel, Martin Kumar, 2020. "Assessment of techno-economic feasibility of centralised seasonal thermal energy storage for decarbonising the Swiss residential heating sector," Renewable Energy, Elsevier, vol. 161(C), pages 1209-1225.
- Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Arnaudo, Monica & Topel, Monika & Puerto, Pablo & Widl, Edmund & Laumert, Björn, 2019. "Heat demand peak shaving in urban integrated energy systems by demand side management - A techno-economic and environmental approach," Energy, Elsevier, vol. 186(C).
- Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Arnaudo, Monica & Dalgren, Johan & Topel, Monika & Laumert, Björn, 2021. "Waste heat recovery in low temperature networks versus domestic heat pumps - A techno-economic and environmental analysis," Energy, Elsevier, vol. 219(C).
- Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
- Wesselink, Maxim & Liu, Wen & Koornneef, Joris & van den Broek, Machteld, 2018. "Conceptual market potential framework of high temperature aquifer thermal energy storage - A case study in the Netherlands," Energy, Elsevier, vol. 147(C), pages 477-489.
- Böhm, Hans & Lindorfer, Johannes, 2019. "Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials," Energy, Elsevier, vol. 179(C), pages 1246-1264.
- Liu, Zuming & Zhao, Yingru & Wang, Xiaonan, 2020. "Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response," Applied Energy, Elsevier, vol. 279(C).
- Bloemendal, Martin & Olsthoorn, Theo & Boons, Frank, 2014. "How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage," Energy Policy, Elsevier, vol. 66(C), pages 104-114.
- Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
- Birdsell, Daniel T. & Adams, Benjamin M. & Saar, Martin O., 2021. "Minimum transmissivity and optimal well spacing and flow rate for high-temperature aquifer thermal energy storage," Applied Energy, Elsevier, vol. 289(C).
- Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
- Fleuchaus, Paul & Schüppler, Simon & Bloemendal, Martin & Guglielmetti, Luca & Opel, Oliver & Blum, Philipp, 2020. "Risk analysis of High-Temperature Aquifer Thermal Energy Storage (HT-ATES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Pratiwi, Astu Sam & Trutnevyte, Evelina, 2022. "Decision paths to reduce costs and increase economic impact of geothermal district heating in Geneva, Switzerland," Applied Energy, Elsevier, vol. 322(C).
- Zhou, Dejian & Li, Ke & Gao, Huhao & Tatomir, Alexandru & Sauter, Martin & Ganzer, Leonhard, 2024. "Techno-economic assessment of high-temperature aquifer thermal energy storage system, insights from a study case in Burgwedel, Germany," Applied Energy, Elsevier, vol. 372(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jackson, Matthew D. & Regnier, Geraldine & Staffell, Iain, 2024. "Aquifer Thermal Energy Storage for low carbon heating and cooling in the United Kingdom: Current status and future prospects," Applied Energy, Elsevier, vol. 376(PA).
- Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
- Li, Shuang & Wang, Gaosheng & Zhou, Mengmeng & Song, Xianzhi & Shi, Yu & Yi, Junlin & Zhao, Jialin & Zhou, Yifan, 2024. "Thermal performance of an aquifer thermal energy storage system: Insights from novel multilateral wells," Energy, Elsevier, vol. 294(C).
- Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Katarina Marojević & Tomislav Kurevija & Marija Macenić, 2025. "Challenges and Opportunities for Aquifer Thermal Energy Storage (ATES) in EU Energy Transition Efforts—An Overview," Energies, MDPI, vol. 18(4), pages 1-25, February.
- Zhou, Dejian & Li, Ke & Gao, Huhao & Tatomir, Alexandru & Sauter, Martin & Ganzer, Leonhard, 2024. "Techno-economic assessment of high-temperature aquifer thermal energy storage system, insights from a study case in Burgwedel, Germany," Applied Energy, Elsevier, vol. 372(C).
- Chen, Kecheng & Sun, Xiang & Soga, Kenichi & Nico, Peter S. & Dobson, Patrick F., 2024. "Machine-learning-assisted long-term G functions for bidirectional aquifer thermal energy storage system operation," Energy, Elsevier, vol. 301(C).
- Joana Verheyen & Christian Thommessen & Jürgen Roes & Harry Hoster, 2025. "Effects on the Unit Commitment of a District Heating System Due to Seasonal Aquifer Thermal Energy Storage and Solar Thermal Integration," Energies, MDPI, vol. 18(3), pages 1-33, January.
- Beernink, Stijn & Bloemendal, Martin & Kleinlugtenbelt, Rob & Hartog, Niels, 2022. "Maximizing the use of aquifer thermal energy storage systems in urban areas: effects on individual system primary energy use and overall GHG emissions," Applied Energy, Elsevier, vol. 311(C).
- Qi, Cuiting & Zhou, Renjie & Zhan, Hongbin, 2023. "Analysis of heat transfer in an aquifer thermal energy storage system: On the role of two-dimensional thermal conduction," Renewable Energy, Elsevier, vol. 217(C).
- Saletti, Costanza & Zimmerman, Nathan & Morini, Mirko & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2021. "Enabling smart control by optimally managing the State of Charge of district heating networks," Applied Energy, Elsevier, vol. 283(C).
- Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
- Wang, Jiacheng & Tan, Xianfeng & Zhao, Zhihong & Chen, Jinfan & He, Jie & Shi, Qipeng, 2024. "Coupled thermo-hydro-mechanical modeling on geothermal doublet subject to seasonal exploitation and storage," Energy, Elsevier, vol. 293(C).
- Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
- Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
- Pans, M.A. & Eames, P.C., 2024. "A study of the benefits of including thermal energy stores in district heating networks," Renewable Energy, Elsevier, vol. 231(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005850. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.