IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2478-d358179.html
   My bibliography  Save this article

Aquifer Thermal Energy Storage (ATES) for District Heating and Cooling: A Novel Modeling Approach Applied in a Case Study of a Finnish Urban District

Author

Listed:
  • Oleg Todorov

    (Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland)

  • Kari Alanne

    (Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland)

  • Markku Virtanen

    (Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland)

  • Risto Kosonen

    (Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland
    College of Urban Construction, Nanjing Tech University, Nanjing 211800, China)

Abstract

Aquifer thermal energy storage (ATES) combined with ground-source heat pumps (GSHP) offer an attractive technology to match supply and demand by efficiently recycling heating and cooling loads. This study analyses the integration of the ATES–GSHP system in both district heating and cooling networks of an urban district in southwestern Finland, in terms of technoeconomic feasibility, efficiency, and impact on the aquifer area. A novel mathematical modeling for GSHP operation and energy system management is proposed and demonstrated, using hourly data for heating and cooling demand. Hydrogeological and geographic data from different Finnish data sources is retrieved in order to calibrate and validate a groundwater model. Two different scenarios for ATES operation are investigated, limited by the maximum pumping flow rate of the groundwater area. The additional precooling exchanger in the second scenario resulted in an important advantage, since it increased the heating and cooling demand covered by ATES by 13% and 15%, respectively, and decreased the energy production cost by 5.2%. It is concluded that dispatching heating and cooling loads in a single operation, with annually balanced ATES management in terms of energy and pumping flows resulted in a low long-term environmental impact and is economically feasible (energy production cost below 30 €/MWh).

Suggested Citation

  • Oleg Todorov & Kari Alanne & Markku Virtanen & Risto Kosonen, 2020. "Aquifer Thermal Energy Storage (ATES) for District Heating and Cooling: A Novel Modeling Approach Applied in a Case Study of a Finnish Urban District," Energies, MDPI, vol. 13(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2478-:d:358179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Popovski, Eftim & Aydemir, Ali & Fleiter, Tobias & Bellstädt, Daniel & Büchele, Richard & Steinbach, Jan, 2019. "The role and costs of large-scale heat pumps in decarbonising existing district heating networks – A case study for the city of Herten in Germany," Energy, Elsevier, vol. 180(C), pages 918-933.
    2. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    3. Fransje L. Hooimeijer & Linda Maring, 2018. "The significance of the subsurface in urban renewal," Journal of Urbanism: International Research on Placemaking and Urban Sustainability, Taylor & Francis Journals, vol. 11(3), pages 303-328, July.
    4. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    5. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    6. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    7. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    8. Nielsen, Steffen & Möller, Bernd, 2013. "GIS based analysis of future district heating potential in Denmark," Energy, Elsevier, vol. 57(C), pages 458-468.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Grzegórska & Piotr Rybarczyk & Valdas Lukoševičius & Joanna Sobczak & Andrzej Rogala, 2021. "Smart Asset Management for District Heating Systems in the Baltic Sea Region," Energies, MDPI, vol. 14(2), pages 1-25, January.
    2. Oleg Todorov & Kari Alanne & Markku Virtanen & Risto Kosonen, 2021. "A Novel Data Management Methodology and Case Study for Monitoring and Performance Analysis of Large-Scale Ground Source Heat Pump (GSHP) and Borehole Thermal Energy Storage (BTES) System," Energies, MDPI, vol. 14(6), pages 1-25, March.
    3. Qi, Cuiting & Zhou, Renjie & Zhan, Hongbin, 2023. "Analysis of heat transfer in an aquifer thermal energy storage system: On the role of two-dimensional thermal conduction," Renewable Energy, Elsevier, vol. 217(C).
    4. Oleg Todorov & Kari Alanne & Markku Virtanen & Risto Kosonen, 2021. "Different Approaches for Evaluation and Modeling of the Effective Thermal Resistance of Groundwater-Filled Boreholes," Energies, MDPI, vol. 14(21), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuang & Wang, Gaosheng & Zhou, Mengmeng & Song, Xianzhi & Shi, Yu & Yi, Junlin & Zhao, Jialin & Zhou, Yifan, 2024. "Thermal performance of an aquifer thermal energy storage system: Insights from novel multilateral wells," Energy, Elsevier, vol. 294(C).
    2. Fleuchaus, Paul & Schüppler, Simon & Bloemendal, Martin & Guglielmetti, Luca & Opel, Oliver & Blum, Philipp, 2020. "Risk analysis of High-Temperature Aquifer Thermal Energy Storage (HT-ATES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Stemmle, Ruben & Blum, Philipp & Schüppler, Simon & Fleuchaus, Paul & Limoges, Melissa & Bayer, Peter & Menberg, Kathrin, 2021. "Environmental impacts of aquifer thermal energy storage (ATES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Nordbeck, Johannes & Bauer, Sebastian & Dahmke, Andreas & Delfs, Jens-Olaf & Gomes, Hugo & Hailemariam, Henok & Kinias, Constantin & Meier zu Beerentrup, Kerstin & Nagel, Thomas & Smirr, Christian & V, 2020. "A modular cement-based subsurface heat storage: Performance test, model development and thermal impacts," Applied Energy, Elsevier, vol. 279(C).
    5. Cassina, Lisa & Laloui, Lyesse & Rotta Loria, Alessandro F., 2022. "Thermal interactions among vertical geothermal borehole fields," Renewable Energy, Elsevier, vol. 194(C), pages 1204-1220.
    6. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    7. Qi, Cuiting & Zhou, Renjie & Zhan, Hongbin, 2023. "Analysis of heat transfer in an aquifer thermal energy storage system: On the role of two-dimensional thermal conduction," Renewable Energy, Elsevier, vol. 217(C).
    8. Halilovic, Smajil & Böttcher, Fabian & Zosseder, Kai & Hamacher, Thomas, 2023. "Optimizing the spatial arrangement of groundwater heat pumps and their well locations," Renewable Energy, Elsevier, vol. 217(C).
    9. Miguel Gonzalez-Salazar & Thomas Langrock & Christoph Koch & Jana Spieß & Alexander Noack & Markus Witt & Michael Ritzau & Armin Michels, 2020. "Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin," Energies, MDPI, vol. 13(23), pages 1-27, December.
    10. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    11. van der Roest, Els & Snip, Laura & Fens, Theo & van Wijk, Ad, 2020. "Introducing Power-to-H3: Combining renewable electricity with heat, water and hydrogen production and storage in a neighbourhood," Applied Energy, Elsevier, vol. 257(C).
    12. Manon Bulté & Thierry Duren & Olivier Bouhon & Estelle Petitclerc & Mathieu Agniel & Alain Dassargues, 2021. "Numerical Modeling of the Interference of Thermally Unbalanced Aquifer Thermal Energy Storage Systems in Brussels (Belgium)," Energies, MDPI, vol. 14(19), pages 1-17, September.
    13. Schüppler, Simon & Fleuchaus, Paul & Duchesne, Antoine & Blum, Philipp, 2022. "Cooling supply costs of a university campus," Energy, Elsevier, vol. 249(C).
    14. Malte Schwanebeck & Marcus Krüger & Rainer Duttmann, 2021. "Improving GIS-Based Heat Demand Modelling and Mapping for Residential Buildings with Census Data Sets at Regional and Sub-Regional Scales," Energies, MDPI, vol. 14(4), pages 1-18, February.
    15. Shi, Yu & Cui, Qiliang & Song, Xianzhi & Liu, Shaomin & Yang, Zijiang & Peng, Junlan & Wang, Lizhi & Guo, Yanchun, 2023. "Thermal performance of the aquifer thermal energy storage system considering vertical heat losses through aquitards," Renewable Energy, Elsevier, vol. 207(C), pages 447-460.
    16. Zhang, Tiansheng & Liu, Chun & Bayer, Peter & Zhang, Liwei & Gong, Xulong & Gu, Kai & Shi, Bin, 2022. "City-wide monitoring and contributing factors to shallow subsurface temperature variability in Nanjing, China," Renewable Energy, Elsevier, vol. 199(C), pages 1105-1115.
    17. Nielsen, Steffen, 2014. "A geographic method for high resolution spatial heat planning," Energy, Elsevier, vol. 67(C), pages 351-362.
    18. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    19. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    20. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2478-:d:358179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.