IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics0360544224012891.html
   My bibliography  Save this article

Soft sensor development for mixed oil interface tracking in multi-product pipelines based on knowledge-informed semi-supervised Variational Bayesian Gaussian mixture regression

Author

Listed:
  • Yuan, Ziyun
  • Chen, Lei
  • Liu, Gang
  • Li, Zukui
  • Wu, Yuchen
  • Pan, Yuanhao
  • Ji, Haoyang
  • Yang, Wen

Abstract

Sequential transportation of petroleum products in multi-product pipelines often lead to occurrence of mixed oil. The prediction of the arrival time of the mixed oil interface constitutes crucial data for the scheduling of treatment actions. However, existing soft sensors, like Gaussian mixture regression (GMR), may face challenges due to limited size of labeled data and numerical issues, leading to performance degradation or even training failure. To tackle these issues, we propose a Knowledge-informed Semi-supervised Variational Bayesian Gaussian mixture model (KI-SSVBGMR). It employs a semi-supervised fully Bayesian structure designed to address the constraints arising from the potential matrix singularity issues and shortage of labeled samples. Subsequently, we determine the crucial regression variable and establish its prior distribution based on industrial knowledge to improve model generalization. Finally, a learning procedure grounded in the Variational Inference algorithm is developed to train the KI-SSVBGMR. Through case studies, including numerical examples and real industrial datasets, our method demonstrates the effectiveness and reliability of the proposed soft sensor development method. This research can aid operators in improving mixed oil section management and provides valuable insights for integrating machine learning with industrial knowledge.

Suggested Citation

  • Yuan, Ziyun & Chen, Lei & Liu, Gang & Li, Zukui & Wu, Yuchen & Pan, Yuanhao & Ji, Haoyang & Yang, Wen, 2024. "Soft sensor development for mixed oil interface tracking in multi-product pipelines based on knowledge-informed semi-supervised Variational Bayesian Gaussian mixture regression," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224012891
    DOI: 10.1016/j.energy.2024.131516
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Xiong & Wen, Kai & Huang, Weihe & Luo, Yinwei & Ding, Yi & Gong, Jing & Gao, Jianfeng & Hong, Bingyuan, 2023. "A high-accuracy online transient simulation framework of natural gas pipeline network by integrating physics-based and data-driven methods," Applied Energy, Elsevier, vol. 333(C).
    2. Wu, Shengyang & Ding, Zhaohao & Wang, Jingyu & Shi, Dongyuan, 2023. "Unveiling bidding uncertainties in electricity markets: A Bayesian deep learning framework based on accurate variational inference," Energy, Elsevier, vol. 276(C).
    3. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Ma, Yunlu & Wang, Bohong & Liao, Qi & Xu, Ning & Ali, Arshid Mahmood & Rashid, Muhammad Imtiaz & Shahzad, Khurram, 2024. "A deep learning-based approach for predicting oil production: A case study in the United States," Energy, Elsevier, vol. 288(C).
    4. Wang, Shuhui & Wang, Zhenpo & Cheng, Ximing & Zhang, Zhaosheng, 2023. "A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model," Energy, Elsevier, vol. 281(C).
    5. Yuan, Ziyun & Chen, Lei & Liu, Gang & Zhang, Yuhan, 2023. "Knowledge-informed Variational Bayesian Gaussian mixture regression model for predicting mixed oil length," Energy, Elsevier, vol. 285(C).
    6. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Xu, Ning & Klemeš, Jiří Jaromír & Wang, Bohong & Liao, Qi & Varbanov, Petar Sabev & Shahzad, Khurram & Ali, Arshid Mahmood, 2023. "Deeppipe: A two-stage physics-informed neural network for predicting mixed oil concentration distribution," Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Xia, Yuheng & Wang, Bohong & Shao, Qi & Liao, Qi & Tu, Renfu & Xu, Bin & Xu, Ning, 2023. "Deeppipe: An intelligent framework for predicting mixed oil concentration in multi-product pipeline," Energy, Elsevier, vol. 282(C).
    2. Xianlin Ma & Long Zhang & Jie Zhan & Shilong Chang, 2024. "Application of Dual-Stage Attention Temporal Convolutional Networks in Gas Well Production Prediction," Mathematics, MDPI, vol. 12(24), pages 1-16, December.
    3. Yuan, Ziyun & Chen, Lei & Liu, Gang & Zhang, Yuhan, 2023. "Knowledge-informed Variational Bayesian Gaussian mixture regression model for predicting mixed oil length," Energy, Elsevier, vol. 285(C).
    4. Koo, Bonchan & Chang, Seungjoon & Kwon, Hweeung, 2023. "Digital twin for natural gas infrastructure operation and management via streaming dynamic mode decomposition with control," Energy, Elsevier, vol. 274(C).
    5. Zhou, Jun & Qin, Can & Fu, Tiantian & Liu, Shitao & Liang, Guangchuan & Li, Cuicui & Hong, Bingyuan, 2024. "Automatic response framework for large complex natural gas pipeline operation optimization based on data-mechanism hybrid-driven," Energy, Elsevier, vol. 307(C).
    6. Huang, Siwan & Shi, Jianheng & Wang, Baoyue & An, Na & Li, Li & Hou, Xuebing & Wang, Chunsen & Zhang, Xiandong & Wang, Kai & Li, Huilin & Zhang, Sui & Zhong, Ming, 2024. "A hybrid framework for day-ahead electricity spot-price forecasting: A case study in China," Applied Energy, Elsevier, vol. 373(C).
    7. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Xiangli, Kang & Meng, Dean, 2024. "A novel method for fault diagnosis and type identification of cell voltage inconsistency in electric vehicles using weighted Euclidean distance evaluation and statistical analysis," Energy, Elsevier, vol. 293(C).
    8. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Ma, Yunlu & Wang, Bohong & Liao, Qi & Xu, Ning & Ali, Arshid Mahmood & Rashid, Muhammad Imtiaz & Shahzad, Khurram, 2024. "A deep learning-based approach for predicting oil production: A case study in the United States," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224012891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.