IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223030827.html
   My bibliography  Save this article

A deep learning-based approach for predicting oil production: A case study in the United States

Author

Listed:
  • Du, Jian
  • Zheng, Jianqin
  • Liang, Yongtu
  • Ma, Yunlu
  • Wang, Bohong
  • Liao, Qi
  • Xu, Ning
  • Ali, Arshid Mahmood
  • Rashid, Muhammad Imtiaz
  • Shahzad, Khurram

Abstract

The accuracy of oil production predictions is crucial in the field of petroleum engineering. However, due to the time series characteristics of oil production and the complex relationship among multiple influencing factors, traditional methods, and time series prediction techniques have limitations in fully extracting time series features and exploring the internal relationships between variables. Deep learning techniques possess unique advantages in solving nonlinear problems and time-series problems but require a significant amount of data and can only conduct short-term oil production predictions due to the nonlinear and chaotic nature of yield. Therefore, this work aims to establish a model that can overcome these limitations. A modified GRU (M-GRU) is proposed to extract time series features of variables and external economic information. Then, the autoregressive (AR) model is integrated into importing priori knowledge to enhance the model's capability in extracting time series information. In addition, feature mapping is used to improve convergence performance. Finally, A loss function that can dynamically adjust the weights is proposed, which can enhance the model's ability to fit from error-prone samples. By validating the proposed model using oil production data, it has been proven that the model can predict oil production accurately and outperform other models with a correlation coefficient reaching 0.99874. Further tests show that the model can provide accurate prediction results even with limited sample sizes and during coincidental events such as financial crises and COVID-19 epidemics, providing strong support for decision-making for reservoir engineers.

Suggested Citation

  • Du, Jian & Zheng, Jianqin & Liang, Yongtu & Ma, Yunlu & Wang, Bohong & Liao, Qi & Xu, Ning & Ali, Arshid Mahmood & Rashid, Muhammad Imtiaz & Shahzad, Khurram, 2024. "A deep learning-based approach for predicting oil production: A case study in the United States," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030827
    DOI: 10.1016/j.energy.2023.129688
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cavicchioli, Maddalena, 2023. "Statistical analysis of Markov switching vector autoregression models with endogenous explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    2. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Lu, Xinyi & Tu, Renfu & Liao, Qi & Xu, Ning & Xia, Yuheng, 2023. "A knowledge-enhanced graph-based temporal-spatial network for natural gas consumption prediction," Energy, Elsevier, vol. 263(PD).
    3. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Xu, Ning & Klemeš, Jiří Jaromír & Wang, Bohong & Liao, Qi & Varbanov, Petar Sabev & Shahzad, Khurram & Ali, Arshid Mahmood, 2023. "Deeppipe: A two-stage physics-informed neural network for predicting mixed oil concentration distribution," Energy, Elsevier, vol. 276(C).
    4. Zheng, Jianqin & Wang, Chang & Liang, Yongtu & Liao, Qi & Li, Zhuochao & Wang, Bohong, 2022. "Deeppipe: A deep-learning method for anomaly detection of multi-product pipelines," Energy, Elsevier, vol. 259(C).
    5. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Xia, Yuheng & Wang, Bohong & Shao, Qi & Liao, Qi & Tu, Renfu & Xu, Bin & Xu, Ning, 2023. "Deeppipe: An intelligent framework for predicting mixed oil concentration in multi-product pipeline," Energy, Elsevier, vol. 282(C).
    6. Zheng, Jianqin & Zhang, Haoran & Dai, Yuanhao & Wang, Bohong & Zheng, Taicheng & Liao, Qi & Liang, Yongtu & Zhang, Fengwei & Song, Xuan, 2020. "Time series prediction for output of multi-region solar power plants," Applied Energy, Elsevier, vol. 257(C).
    7. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Lu, Xinyi & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Shahzad, Khurram & Rashid, Muhammad Imtiaz & Ali, Arshid Mahmood & Liao, Qi & Wang, Bohong, 2022. "A hybrid deep learning framework for predicting daily natural gas consumption," Energy, Elsevier, vol. 257(C).
    8. Wang, Chang & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Zhu, Zhu & Liao, Qi, 2022. "Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines," Energy, Elsevier, vol. 261(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Ziyun & Chen, Lei & Liu, Gang & Li, Zukui & Wu, Yuchen & Pan, Yuanhao & Ji, Haoyang & Yang, Wen, 2024. "Soft sensor development for mixed oil interface tracking in multi-product pipelines based on knowledge-informed semi-supervised Variational Bayesian Gaussian mixture regression," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Xia, Yuheng & Wang, Bohong & Shao, Qi & Liao, Qi & Tu, Renfu & Xu, Bin & Xu, Ning, 2023. "Deeppipe: An intelligent framework for predicting mixed oil concentration in multi-product pipeline," Energy, Elsevier, vol. 282(C).
    2. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Xu, Ning & Klemeš, Jiří Jaromír & Wang, Bohong & Liao, Qi & Varbanov, Petar Sabev & Shahzad, Khurram & Ali, Arshid Mahmood, 2023. "Deeppipe: A two-stage physics-informed neural network for predicting mixed oil concentration distribution," Energy, Elsevier, vol. 276(C).
    3. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Lu, Xinyi & Tu, Renfu & Liao, Qi & Xu, Ning & Xia, Yuheng, 2023. "A knowledge-enhanced graph-based temporal-spatial network for natural gas consumption prediction," Energy, Elsevier, vol. 263(PD).
    4. Ma, Xin & Deng, Yanqiao & Ma, Minda, 2024. "A novel kernel ridge grey system model with generalized Morlet wavelet and its application in forecasting natural gas production and consumption," Energy, Elsevier, vol. 287(C).
    5. Zheng, Jianqin & Du, Jian & Wang, Bohong & Klemeš, Jiří Jaromír & Liao, Qi & Liang, Yongtu, 2023. "A hybrid framework for forecasting power generation of multiple renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    6. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    7. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    8. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    9. Elham M. Al-Ali & Yassine Hajji & Yahia Said & Manel Hleili & Amal M. Alanzi & Ali H. Laatar & Mohamed Atri, 2023. "Solar Energy Production Forecasting Based on a Hybrid CNN-LSTM-Transformer Model," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
    10. Tolga Yalçin & Pol Paradell Solà & Paschalia Stefanidou-Voziki & Jose Luis Domínguez-García & Tugce Demirdelen, 2023. "Exploiting Digitalization of Solar PV Plants Using Machine Learning: Digital Twin Concept for Operation," Energies, MDPI, vol. 16(13), pages 1-17, June.
    11. Bi, Yubo & Wu, Qiulan & Wang, Shilu & Shi, Jihao & Cong, Haiyong & Ye, Lili & Gao, Wei & Bi, Mingshu, 2023. "Hydrogen leakage location prediction at hydrogen refueling stations based on deep learning," Energy, Elsevier, vol. 284(C).
    12. Yuan, Ziyun & Chen, Lei & Liu, Gang & Li, Zukui & Wu, Yuchen & Pan, Yuanhao & Ji, Haoyang & Yang, Wen, 2024. "Soft sensor development for mixed oil interface tracking in multi-product pipelines based on knowledge-informed semi-supervised Variational Bayesian Gaussian mixture regression," Energy, Elsevier, vol. 300(C).
    13. Zhao, Wei & Zhang, Haoran & Zheng, Jianqin & Dai, Yuanhao & Huang, Liqiao & Shang, Wenlong & Liang, Yongtu, 2021. "A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants," Energy, Elsevier, vol. 223(C).
    14. Zhu, Jiebei & Li, Mingrui & Luo, Lin & Zhang, Bidan & Cui, Mingjian & Yu, Lujie, 2023. "Short-term PV power forecast methodology based on multi-scale fluctuation characteristics extraction," Renewable Energy, Elsevier, vol. 208(C), pages 141-151.
    15. Yue Su & Jingfa Li & Wangyi Guo & Yanlin Zhao & Jianli Li & Jie Zhao & Yusheng Wang, 2022. "Prediction of Mixing Uniformity of Hydrogen Injection inNatural Gas Pipeline Based on a Deep Learning Model," Energies, MDPI, vol. 15(22), pages 1-19, November.
    16. Gupta, Priya & Singh, Rhythm, 2023. "Combining a deep learning model with multivariate empirical mode decomposition for hourly global horizontal irradiance forecasting," Renewable Energy, Elsevier, vol. 206(C), pages 908-927.
    17. Huang, Liqiao & Liao, Qi & Qiu, Rui & Liang, Yongtu & Long, Yin, 2021. "Prediction-based analysis on power consumption gap under long-term emergency: A case in China under COVID-19," Applied Energy, Elsevier, vol. 283(C).
    18. Zheng, Jianqin & Wang, Chang & Liang, Yongtu & Liao, Qi & Li, Zhuochao & Wang, Bohong, 2022. "Deeppipe: A deep-learning method for anomaly detection of multi-product pipelines," Energy, Elsevier, vol. 259(C).
    19. Jeong, Jaeik & Kim, Hongseok, 2021. "DeepComp: Deep reinforcement learning based renewable energy error compensable forecasting," Applied Energy, Elsevier, vol. 294(C).
    20. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.