Ferro-reduction of ZnO using concentrated solar energy
Author
Abstract
Suggested Citation
DOI: 10.1016/S0360-5442(03)00181-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Steinfeld, A. & Brack, M. & Meier, A. & Weidenkaff, A. & Wuillemin, D., 1998. "A solar chemical reactor for co-production of zinc and synthesis gas," Energy, Elsevier, vol. 23(10), pages 803-814.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sarker, M.R.I. & Mandal, Soumya & Tuly, Sumaiya Sadika, 2018. "Numerical study on the influence of vortex flow and recirculating flow into a solid particle solar receiver," Renewable Energy, Elsevier, vol. 129(PA), pages 409-418.
- Halmann, M. & Frei, A. & Steinfeld, A., 2007. "Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation," Energy, Elsevier, vol. 32(12), pages 2420-2427.
- Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
- Nikulshina, V. & Hirsch, D. & Mazzotti, M. & Steinfeld, A., 2006. "CO2 capture from air and co-production of H2 via the Ca(OH)2–CaCO3 cycle using concentrated solar power–Thermodynamic analysis," Energy, Elsevier, vol. 31(12), pages 1715-1725.
- Kräupl, Stefan & Wieckert, Christian, 2007. "Economic evaluation of the solar carbothermic reduction of ZnO by using a single sensitivity analysis and a Monte-Carlo risk analysis," Energy, Elsevier, vol. 32(7), pages 1134-1147.
- Palumbo, R. & Keunecke, M. & Möller, S. & Steinfeld, A., 2004. "Reflections on the design of solar thermal chemical reactors: thoughts in transformation," Energy, Elsevier, vol. 29(5), pages 727-744.
- Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
- Cabeza, Luisa F. & Solé, Aran & Fontanet, Xavier & Barreneche, Camila & Jové, Aleix & Gallas, Manuel & Prieto, Cristina & Fernández, A. Inés, 2017. "Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept," Applied Energy, Elsevier, vol. 185(P1), pages 836-845.
- Adrián García & Rut Sanchis & Francisco J. Llopis & Isabel Vázquez & María Pilar Pico & María Luisa López & Inmaculada Álvarez-Serrano & Benjamín Solsona, 2020. "Ni Supported on Natural Clays as a Catalyst for the Transformation of Levulinic Acid into γ-Valerolactone without the Addition of Molecular Hydrogen," Energies, MDPI, vol. 13(13), pages 1-19, July.
- Halmann, M. & Frei, A. & Steinfeld, A., 2002. "Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons," Energy, Elsevier, vol. 27(12), pages 1069-1084.
- Sarker, M.R.I. & Saha, Manabendra & Rahman, Md Sazan & Beg, R.A., 2016. "Recirculating metallic particles for the efficiency enhancement of concentrated solar receivers," Renewable Energy, Elsevier, vol. 96(PA), pages 850-862.
- Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Kodama, T. & Shimizu, T. & Satoh, T. & Shimizu, K.-I., 2003. "Stepwise production of CO-rich syngas and hydrogen via methane reforming by a WO3-redox catalyst," Energy, Elsevier, vol. 28(11), pages 1055-1068.
- Wieckert, Christian & Palumbo, Robert & Frommherz, Ulrich, 2004. "A two-cavity reactor for solar chemical processes: heat transfer model and application to carbothermic reduction of ZnO," Energy, Elsevier, vol. 29(5), pages 771-787.
- Kodama, T & Ohtake, H & Matsumoto, S & Aoki, A & Shimizu, T & Kitayama, Y, 2000. "Thermochemical methane reforming using a reactive WO3/W redox system," Energy, Elsevier, vol. 25(5), pages 411-425.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:5:p:745-756. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.