IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224013495.html
   My bibliography  Save this article

An assessment of current hydrogen supply chains in the Gulf Cooperation Council (GCC)

Author

Listed:
  • Olabi, Valentina
  • Jouhara, Hussam

Abstract

The Gulf Cooperation Council (GCC), comprising: Saudi Arabia, United Arab Emirates, Kuwait, Qatar, Oman, and Bahrain, is home to an abundant number of resources, including natural gas and solar and wind energy (renewables). Because of this, the region is favourably positioned to become a significant player in both blue and green hydrogen production and their export. Current dependence on fossil fuels and ambitious national targets for decarbonisation have led the region and world to research the feasibility of switching to a hydrogen economy. This literature review critically examines the current advantages and strategies adopted by the GCC to expedite the implementation of hydrogen supply chains, as well as investigation into the methodologies employed in current research for the modelling and optimisation of hydrogen supply chains. Insight into these endeavours is critical for stakeholders to assess the inherent challenges and opportunities in establishing a sustainable hydrogen economy. Despite a substantial global effort, establishing a solid hydrogen supply chain presently faces various obstacles, including the costs of clean hydrogen production. Scaling-up storage and transport methods is an issue that affects all types of hydrogen, including carbon-intensive (grey) hydrogen. However, the current costs of green hydrogen production, mostly via the process of electrolysis, is a major obstacle hindering the widescale deployment of clean hydrogen. Research in this literature review found that compressed gas and cryogenic liquid options have the highest storage capacities for hydrogen of 39.2 and 70.9 kg/m3, respectively. Meanwhile, for hydrogen transportation, pipelines and cryogenic tankers are the most conventional and efficient options, with an efficiency of over 99 %. Cryogenic ships to carry liquid hydrogen also show potential due to their large storage capacities of 10,000 tonnes per shipment, However, costs per vessel are currently still very expensive, ranging between $ 465 and $620 million.

Suggested Citation

  • Olabi, Valentina & Jouhara, Hussam, 2024. "An assessment of current hydrogen supply chains in the Gulf Cooperation Council (GCC)," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224013495
    DOI: 10.1016/j.energy.2024.131576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224013495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    2. Deng, Yimin & Li, Shuo & Appels, Lise & Zhang, Huili & Sweygers, Nick & Baeyens, Jan & Dewil, Raf, 2023. "Steam reforming of ethanol by non-noble metal catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    4. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt7p3500g2, Institute of Transportation Studies, UC Davis.
    5. Price, James & Keppo, Ilkka & Dodds, Paul E., 2023. "The role of new nuclear power in the UK's net-zero emissions energy system," Energy, Elsevier, vol. 262(PA).
    6. Ogden, Joan & Jaffe, Amy Myers & Scheitrum, Daniel & McDonald, Zane & Miller, Marshall, 2018. "Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature," Energy Policy, Elsevier, vol. 115(C), pages 317-329.
    7. Bonfante, Mariele Canal & Raspini, Jéssica Prats & Fernandes, Ivan Belo & Fernandes, Suélen & Campos, Lucila M.S. & Alarcon, Orestes Estevam, 2021. "Achieving Sustainable Development Goals in rare earth magnets production: A review on state of the art and SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Durakovic, Goran & del Granado, Pedro Crespo & Tomasgard, Asgeir, 2023. "Are green and blue hydrogen competitive or complementary? Insights from a decarbonized European power system analysis," Energy, Elsevier, vol. 282(C).
    9. Amadou Fousseyni Touré & Sid Ali Addouche & Fadaba Danioko & Badié Diourté & Abderrahman El Mhamedi, 2019. "Hybrid Systems Optimization: Application to Hybrid Systems Photovoltaic Connected to Grid. A Mali Case Study," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    10. Jahanbani Veshareh, Moein & Thaysen, Eike Marie & Nick, Hamidreza M., 2022. "Feasibility of hydrogen storage in depleted hydrocarbon chalk reservoirs: Assessment of biochemical and chemical effects," Applied Energy, Elsevier, vol. 323(C).
    11. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Witkowski, Andrzej & Rusin, Andrzej & Majkut, Mirosław & Stolecka, Katarzyna, 2017. "Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects," Energy, Elsevier, vol. 141(C), pages 2508-2518.
    13. Deng, Yimin & Dewil, Raf & Appels, Lise & Li, Shuo & Baeyens, Jan & Degrève, Jan & Wang, Guirong, 2021. "Thermo-chemical water splitting: Selection of priority reversible redox reactions by multi-attribute decision making," Renewable Energy, Elsevier, vol. 170(C), pages 800-810.
    14. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt1804p4vw, Institute of Transportation Studies, UC Davis.
    15. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    16. Catron, Jonathan & Stainback, G. Andrew & Dwivedi, Puneet & Lhotka, John M., 2013. "Bioenergy development in Kentucky: A SWOT-ANP analysis," Forest Policy and Economics, Elsevier, vol. 28(C), pages 38-43.
    17. Yuan, Meng & Thellufsen, Jakob Zinck & Lund, Henrik & Liang, Yongtu, 2021. "The electrification of transportation in energy transition," Energy, Elsevier, vol. 236(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    2. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
    3. Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Davis, M. & Okunlola, A. & Di Lullo, G. & Giwa, T. & Kumar, A., 2023. "Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    5. Lee, Leok & Ingenhoven, Philip & Saw, Woei L. & Nathan, Graham J ‘Gus’, 2024. "The techno-economics of transmitting heat at high temperatures in insulated pipes over large distances," Applied Energy, Elsevier, vol. 358(C).
    6. Leonardo Vidas & Rui Castro & Armando Pires, 2022. "A Review of the Impact of Hydrogen Integration in Natural Gas Distribution Networks and Electric Smart Grids," Energies, MDPI, vol. 15(9), pages 1-23, April.
    7. Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
    8. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    9. Haider, Minza & Davis, Matthew & Kumar, Amit, 2024. "Development of a framework to assess the greenhouse gas mitigation potential from the adoption of low-carbon road vehicles in a hydrocarbon-rich region," Applied Energy, Elsevier, vol. 358(C).
    10. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    11. Enrique Saborit & Eduardo García-Rosales Vazquez & M. Dolores Storch de Gracia Calvo & Gema María Rodado Nieto & Pablo Martínez Fondón & Alberto Abánades, 2023. "Alternatives for Transport, Storage in Port and Bunkering Systems for Offshore Energy to Green Hydrogen," Energies, MDPI, vol. 16(22), pages 1-12, November.
    12. Chang, Le & Li, Zheng & Gao, Dan & Huang, He & Ni, Weidou, 2007. "Pathways for hydrogen infrastructure development in China: Integrated assessment for vehicle fuels and a case study of Beijing," Energy, Elsevier, vol. 32(11), pages 2023-2037.
    13. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    14. Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
    15. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    16. Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
    17. Yongxi Huang & Yueyue Fan & Nils Johnson, 2010. "Multistage System Planning for Hydrogen Production and Distribution," Networks and Spatial Economics, Springer, vol. 10(4), pages 455-472, December.
    18. Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
    19. Olateju, Babatunde & Kumar, Amit, 2011. "Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands," Energy, Elsevier, vol. 36(11), pages 6326-6339.
    20. Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224013495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.