IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics036054422401051x.html
   My bibliography  Save this article

Investigation of the oxygen-methane combustion and heating characteristics in industrial-scale copper anode refining furnace

Author

Listed:
  • Lu, Jiajun
  • Yang, Shiliang
  • Wang, Hua

Abstract

Copper anode refining furnace is commonly utilized for the refinement of crude copper derived from the copper converting process, primarily employing methane combustion to heat the copper material. In this study, a computational fluid dynamics model of oxygen-methane combustion is developed to scrutinize the turbulent combustion characteristics of methane in the industrial-scale rotary copper anode furnace. After model validation, the combustion characteristics and heating behavior in the copper anode furnace are explored. The findings reveal that the local high-temperature zone in the anode furnace appears at the tail of the high-speed jet, located in the middle and lower segments of the furnace. The maximum recirculation zone is situated at the furnace rear, indicating an uneven temperature distribution within the furnace. For small nozzle inclination angles, the gas recirculation zone and high-temperature area are situated in the upper region of furnace. Conversely, when the nozzle inclination angle is excessively large, a substantial recirculation area is not observed. Large nozzle diameter reduces jet velocity of ejected gas from the nozzle. The optimal nozzle inclination angle is determined to be 8°, with a nozzle diameter of 30 mm for the methane inlet and a ring-shaped oxygen inlet diameter of 50 mm.

Suggested Citation

  • Lu, Jiajun & Yang, Shiliang & Wang, Hua, 2024. "Investigation of the oxygen-methane combustion and heating characteristics in industrial-scale copper anode refining furnace," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s036054422401051x
    DOI: 10.1016/j.energy.2024.131278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401051X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chynoweth, David P & Owens, John M & Legrand, Robert, 2001. "Renewable methane from anaerobic digestion of biomass," Renewable Energy, Elsevier, vol. 22(1), pages 1-8.
    2. Alvarado, S & Maldonado, P & Barrios, A & Jaques, I, 2002. "Long term energy-related environmental issues of copper production," Energy, Elsevier, vol. 27(2), pages 183-196.
    3. Shakeel, Mohammad Raghib & Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2018. "Numerical modeling of oxy-methane combustion in a model gas turbine combustor," Applied Energy, Elsevier, vol. 228(C), pages 68-81.
    4. Alvarado, Sergio & Maldonado, Pedro & Jaques, Iván, 1999. "Energy and environmental implications of copper production," Energy, Elsevier, vol. 24(4), pages 307-316.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fthenakis, Vasilis & Wang, Wenming & Kim, Hyung Chul, 2009. "Life cycle inventory analysis of the production of metals used in photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 493-517, April.
    2. Correa, Juan A. & Gómez, Marcos & Luengo, Andrés & Parro, Francisco, 2021. "Environmental misallocation in the copper industry," Resources Policy, Elsevier, vol. 71(C).
    3. Najdenov, Ivan & Raić, Karlo T. & Kokeza, Gordana, 2012. "Aspects of energy reduction by autogenous copper production in the copper smelting plant Bor," Energy, Elsevier, vol. 43(1), pages 376-384.
    4. Northey, S. & Mohr, S. & Mudd, G.M. & Weng, Z. & Giurco, D., 2014. "Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 190-201.
    5. Lerato Shikwambana & Boitumelo Mokgoja & Paidamwoyo Mhangara, 2022. "A Qualitative Assessment of the Trends, Distribution and Sources of Methane in South Africa," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    6. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    7. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    8. Di Corato, Luca & Moretto, Michele, 2011. "Investing in biogas: Timing, technological choice and the value of flexibility from input mix," Energy Economics, Elsevier, vol. 33(6), pages 1186-1193.
    9. Li, Bo & Shi, Baolu & Chu, Qingzhao & Zhao, Xiaoyao & Li, Junwei & Wang, Ningfei, 2019. "Characteristics of stoichiometric CH4/O2/CO2 flame up to the pure oxygen condition," Energy, Elsevier, vol. 168(C), pages 151-159.
    10. Surita, Sharon C. & Tansel, Berrin, 2015. "Preliminary investigation to characterize deposits forming during combustion of biogas from anaerobic digesters and landfills," Renewable Energy, Elsevier, vol. 80(C), pages 674-681.
    11. Jingura, Raphael Muzondiwa & Musademba, Downmore & Kamusoko, Reckson, 2013. "A review of the state of biomass energy technologies in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 652-659.
    12. Costa, J.C. & Oliveira, J.V. & Alves, M.M., 2016. "Response surface design to study the influence of inoculum, particle size and inoculum to substrate ratio on the methane production from Ulex sp," Renewable Energy, Elsevier, vol. 96(PB), pages 1071-1077.
    13. Uusitalo, V. & Soukka, R. & Horttanainen, M. & Niskanen, A. & Havukainen, J., 2013. "Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector," Renewable Energy, Elsevier, vol. 51(C), pages 132-140.
    14. Francesca Nardin & Fabrizio Mazzetto, 2014. "Mapping of Biomass Fluxes: A Method for Optimizing Biogas-Refinery of Livestock Effluents," Sustainability, MDPI, vol. 6(9), pages 1-21, September.
    15. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    16. Naja, Ghinwa M. & Alary, René & Bajeat, Philippe & Bellenfant, Gaël & Godon, Jean-Jacques & Jaeg, Jean-Philippe & Keck, Gérard & Lattes, Armand & Leroux, Carole & Modelon, Hugues & Moletta-Denat, Mari, 2011. "Assessment of biogas potential hazards," Renewable Energy, Elsevier, vol. 36(12), pages 3445-3451.
    17. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    18. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    19. Frauke P. C. Müller & Gerd-Christian Maack & Wolfgang Buescher, 2017. "Effects of Biogas Substrate Recirculation on Methane Yield and Efficiency of a Liquid-Manure-Based Biogas Plant," Energies, MDPI, vol. 10(3), pages 1-11, March.
    20. Kaparaju, P. & Rintala, J., 2011. "Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland," Renewable Energy, Elsevier, vol. 36(1), pages 31-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s036054422401051x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.