IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010478.html
   My bibliography  Save this article

The energy-saving effect of early-stage autonomous vehicles: A case study and recommendations in a metropolitan area

Author

Listed:
  • Tu, Huizhao
  • Zhao, Liying
  • Tu, Ran
  • Li, Hao

Abstract

This paper presents the energy-saving potential of early-stage autonomous vehicles (AVs) by analyzing empirical AV driving records from a public road test. Vehicle-specific power-based microscopic energy consumption models are used to estimate the energy efficiency of the tested AVs, including light-duty vehicles and heavy-duty trucks. Overall, AVs do not necessarily save energy, largely depending on driving scenarios, such as traffic conditions and road types. On expressways, autonomous driving (AD) has an insignificant energy-saving effect (within 10 %) due to similar characteristics to human driving (HD). On urban roads with lower traffic speeds and more interventions from surrounding traffic, AD performs higher energy efficiency due to its capability to accelerate more smoothly by up to 60 %; however, frequent human disengagement generates additional energy consumption of 8%–40 %, especially on urban arterials. We further assessed the marginal effect of trip average speed and AD ratio on energy efficiency, illustrating varied relationships for different driving scenarios and power types. The study suggests a more moderate AD acceleration to elevate the energy-saving effect. Nevertheless, applying AD can hardly reduce the energy of early-stage AVs; instead, control methods to maintain an appropriate speed of the mixed traffic flow can help decrease the total energy consumption.

Suggested Citation

  • Tu, Huizhao & Zhao, Liying & Tu, Ran & Li, Hao, 2024. "The energy-saving effect of early-stage autonomous vehicles: A case study and recommendations in a metropolitan area," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010478
    DOI: 10.1016/j.energy.2024.131274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    2. Barkenbus, Jack N., 2010. "Eco-driving: An overlooked climate change initiative," Energy Policy, Elsevier, vol. 38(2), pages 762-769, February.
    3. Yao, Zhihong & Wang, Yi & Liu, Bo & Zhao, Bin & Jiang, Yangsheng, 2021. "Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vaezipour, Atiyeh & Rakotonirainy, Andry & Haworth, Narelle & Delhomme, Patricia, 2018. "A simulator evaluation of in-vehicle human machine interfaces for eco-safe driving," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 696-713.
    2. Liu, Feiqi & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2019. "Can autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation," Energy Policy, Elsevier, vol. 132(C), pages 462-473.
    3. Vaezipour, Atiyeh & Rakotonirainy, Andry & Haworth, Narelle & Delhomme, Patricia, 2017. "Enhancing eco-safe driving behaviour through the use of in-vehicle human-machine interface: A qualitative study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 247-263.
    4. Liu, Peng & Ma, Yanjiao & Zuo, Yaqing, 2019. "Self-driving vehicles: Are people willing to trade risks for environmental benefits?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 139-149.
    5. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    6. Ahmed, Sumayyah & Sanguinetti, Angela, 2015. "OBDEnergy: Making Metrics Meaningful in Eco-driving Feedback," Institute of Transportation Studies, Working Paper Series qt0x73t2jw, Institute of Transportation Studies, UC Davis.
    7. Qian, Lixian & Yin, Juelin & Huang, Youlin & Liang, Ya, 2023. "The role of values and ethics in influencing consumers’ intention to use autonomous vehicle hailing services," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    8. Pietro Stabile & Federico Ballo & Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2023. "Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios," Energies, MDPI, vol. 16(3), pages 1-19, January.
    9. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    10. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    11. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    12. Xu Kuang & Fuquan Zhao & Han Hao & Zongwei Liu, 2019. "Assessing the Socioeconomic Impacts of Intelligent Connected Vehicles in China: A Cost–Benefit Analysis," Sustainability, MDPI, vol. 11(12), pages 1-28, June.
    13. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    14. Dulebenets, Maxim A. & Ozguven, Eren Erman & Moses, Ren, 2018. "The Highway Beautification Act: Towards improving efficiency of the Federal Outdoor Advertising Control Program," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 88-106.
    15. Jia Guo & Yusak Susilo & Constantinos Antoniou & Anna Pernestål Brenden, 2020. "Influence of Individual Perceptions on the Decision to Adopt Automated Bus Services," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    16. Yuche Chen & Ruixiao Sun & Xuanke Wu, 2021. "Estimating Bounds of Aerodynamic, Mass, and Auxiliary Load Impacts on Autonomous Vehicles: A Powertrain Simulation Approach," Sustainability, MDPI, vol. 13(22), pages 1-13, November.
    17. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    18. Perrine, Kenneth A. & Kockelman, Kara M. & Huang, Yantao, 2020. "Anticipating long-distance travel shifts due to self-driving vehicles," Journal of Transport Geography, Elsevier, vol. 82(C).
    19. Raphael Hoerler & Fabian Haerri & Merja Hoppe, 2019. "New Solutions in Sustainable Commuting—The Attitudes and Experience of European Stakeholders and Experts in Switzerland," Social Sciences, MDPI, vol. 8(7), pages 1-19, July.
    20. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.