IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224007916.html
   My bibliography  Save this article

Fundamental research on the condensation heat transfer of the hydrocarbon-mixture energy in a spiral tube described by a universal model using flow pattern based and general modes

Author

Listed:
  • Tian, Zhongyun
  • Zheng, Wenke
  • Guo, Jiwei
  • Jiang, Yiqiang
  • Liang, Zhirong
  • Mi, Xiaoguang

Abstract

The transportation of liquefied natural gas (LNG) is a crucial aspect of global energy application and security. However, there are still some challenges in liquefaction. This study establishes systematic experiments to investigate the condensation two-phase flow and heat transfer process of hydrocarbon-mixture energy (methane/ethane/propane/isobutane) in a spiral tube. The main influencing parameters, including mass flux (200–560 kg/(m2·s)), operating pressure (2–4 MPa), and vapor quality (0–1) on the heat transfer intensity and frictional pressure drop were analyzed. Different two-phase flow patterns were observed and categorized them as bubble flow, intermittent flow, stratified-wavy flow, and annular flow. For bubble flow and intermittent flow, vapor quality is found to remarkably affect the heat transfer; regarding stratified-wavy flow and annular flow, gravitational force and inertia force are found to prominently influence the heat transfer, respectively. Additionally, a newly universal model includes split flow patterns mode (SFPM) and the general mode (GM) has been proposed, which is with high-precision for describing the condensation heat transfer coefficients of different flow patterns. Furthermore, the analytical results show the SFPM's root mean square error and mean absolute relative deviation are 97.35 W/(m2·K) and 0.036.

Suggested Citation

  • Tian, Zhongyun & Zheng, Wenke & Guo, Jiwei & Jiang, Yiqiang & Liang, Zhirong & Mi, Xiaoguang, 2024. "Fundamental research on the condensation heat transfer of the hydrocarbon-mixture energy in a spiral tube described by a universal model using flow pattern based and general modes," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224007916
    DOI: 10.1016/j.energy.2024.131019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Lifeng & Zhang, Sijia, 2023. "Analysis and identification of gas-liquid two-phase flow pattern based on multi-scale power spectral entropy and pseudo-image encoding," Energy, Elsevier, vol. 282(C).
    2. Xu, Guangyue & Chen, Yaqiang & Yang, Mengge & Li, Shuang & Marma, Kyaw Jaw Sine, 2023. "An outlook analysis on China's natural gas consumption forecast by 2035: Applying a seasonal forecasting method," Energy, Elsevier, vol. 284(C).
    3. Qian, Lanping & Bai, Yang & Wang, Wenya & Meng, Fanyi & Chen, Zhisong, 2023. "Natural gas crisis, system resilience and emergency responses: A China case," Energy, Elsevier, vol. 276(C).
    4. Primabudi, Eko & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process," Energy, Elsevier, vol. 185(C), pages 492-504.
    5. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    6. Wang, Yue & Wang, Zhaoxi & Wang, Bingbing & Bian, Jiang & Hua, Yihuai & Cai, Weihua, 2023. "Heterogeneous nucleation condensation of methane gas on the wall-A molecular dynamics study," Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
    2. Li, Xiaodong & Jinxi, Wang, 2023. "A novel process for the simultaneous production of methanol, oxygen, and electricity using a PEM electrolyzer and agricultural-based landfill gas-fed oxyfuel combustion power plant," Energy, Elsevier, vol. 284(C).
    3. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2023. "Multi-objective simulation–optimization via kriging surrogate models applied to natural gas liquefaction process design," Energy, Elsevier, vol. 262(PB).
    4. Saghi Raeisdanaei & Vahid Pirouzfar & Chia-Hung Su, 2022. "Technical and economic assessment of processes for the LNG production in cycles with expander and refrigeration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13407-13425, November.
    5. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    6. Katebah, Mary A. & Hussein, Mohamed M. & Al-musleh, Easa I. & Almomani, Fares, 2023. "A systematic optimization approach of an actual LNG plant: Power savings and enhanced process economy," Energy, Elsevier, vol. 269(C).
    7. Shazed, Abdur Rahman & Ashraf, Hafsa M. & Katebah, Mary A. & Bouabidi, Zineb & Al-musleh, Easa I., 2021. "Overcoming the energy and environmental issues of LNG plants by using solid oxide fuel cells," Energy, Elsevier, vol. 218(C).
    8. Sun, Shirui & Chun, Wei & Yang, Ao & Shen, Weifeng & Cui, Peizhe & Ren, Jingzheng, 2020. "The separation of ternary azeotropic mixture: Thermodynamic insight and improved multi-objective optimization," Energy, Elsevier, vol. 206(C).
    9. Zhang, Qiang & Zhang, Ningqi & Zhu, Shengbo & Heydarian, Dariush, 2023. "Thermodynamic simulation and optimization of natural gas liquefaction cycle based on the common structure of organic rankine cycle," Energy, Elsevier, vol. 264(C).
    10. Shamsi, M. & Obaid, A.A. & Vaziri, M. & Mousavian, S. & Hekmatian, A. & Bonyadi, M., 2024. "A comprehensive comparison of the turbo-expander, Joule-Thomson, and combination of mechanical refrigeration and Joule-Thomson processes for natural gas liquids production," Energy, Elsevier, vol. 295(C).
    11. Fang, Guochang & Meng, Aoxiang & Wang, Qingling & Zhou, Huixin & Tian, Lixin, 2024. "Analysis of the evolution path of new energy system under polymorphic uncertainty—A case study of China," Energy, Elsevier, vol. 300(C).
    12. Lee, Jaejun & Son, Heechang & Oh, Juyoung & Yu, Taejong & Kim, Hyeonuk & Lim, Youngsub, 2024. "Advanced process design of subcooling re-liquefaction system considering storage pressure for a liquefied CO2 carrier," Energy, Elsevier, vol. 293(C).
    13. Zhang, L.P. & Zhou, P., 2024. "Reassessing energy security risk incorporating external shock: A variance-based composite indicator approach," Applied Energy, Elsevier, vol. 358(C).
    14. Jinxi, Wang & Xue, Bai & Ying, Liang & Aimin, Wang & Cuiying, Lu & Yajun, Ma & Chengmeng, Chen & Heydarian, Dariush, 2023. "Simulation and technical, economic, and environmental analyses of natural gas liquefaction cycle using different configurations," Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224007916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.