IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics036054422400327x.html
   My bibliography  Save this article

Advanced process design of subcooling re-liquefaction system considering storage pressure for a liquefied CO2 carrier

Author

Listed:
  • Lee, Jaejun
  • Son, Heechang
  • Oh, Juyoung
  • Yu, Taejong
  • Kim, Hyeonuk
  • Lim, Youngsub

Abstract

Because carbon capture and storage methods are considered greenhouse gas reduction technologies, demand for a large liquefied CO2 (LCO2) carrier to transport captured CO2 to storage sites has arisen. To prevent the emission of boil-off CO2 gas during transport, a CO2 re-liquefaction system would be required. This study suggests a new type of LCO2 subcooling re-liquefaction system for an LCO2 carrier and demonstrates its effectiveness by comparing its performance with that of conventional re-liquefaction systems considering LCO2 storage pressure. The results show that the suggested LCO2 subcooling system has lower specific energy consumption than that of conventional LCO2 re-liquefaction systems, even with a simpler configuration. At 15 bar of storage pressure, the LCO2 subcooling system has a lower specific energy consumption of 176.91 kJ/kgCO2, which is 18.2 and 5.3 % lower than that of the Linde–Hampson cycle and vapor-compression refrigeration cycle using NH3 as a refrigerant, respectively. Additionally, economic benefits can be obtained because the boil-off CO2 compressor is not required in an LCO2 subcooling system. Finally, considering CO2 re-liquefaction performance and the design constraints of the LCO2 carrier, 15 bar LCO2 storage conditions with a subcooling system are considered the most economical LCO2 carrier design.

Suggested Citation

  • Lee, Jaejun & Son, Heechang & Oh, Juyoung & Yu, Taejong & Kim, Hyeonuk & Lim, Youngsub, 2024. "Advanced process design of subcooling re-liquefaction system considering storage pressure for a liquefied CO2 carrier," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s036054422400327x
    DOI: 10.1016/j.energy.2024.130556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400327X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Mohd Shariq & Lee, Moonyong, 2013. "Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints," Energy, Elsevier, vol. 49(C), pages 146-155.
    2. Xiong, Xiaojun & Lin, Wensheng & Gu, Anzhong, 2015. "Integration of CO2 cryogenic removal with a natural gas pressurized liquefaction process using gas expansion refrigeration," Energy, Elsevier, vol. 93(P1), pages 1-9.
    3. Choe, Changgwon & Haider, Junaid & Lim, Hankwon, 2023. "Carbon capture and liquefaction from methane steam reforming unit: 4E’s analysis (Energy, Exergy, Economic, and Environmental)," Applied Energy, Elsevier, vol. 332(C).
    4. Son, Heechang & Austbø, Bjørn & Gundersen, Truls & Hwang, Jihyun & Lim, Youngsub, 2022. "Techno-economic versus energy optimization of natural gas liquefaction processes with different heat exchanger technologies," Energy, Elsevier, vol. 245(C).
    5. Kwak, Dong-Hun & Heo, Jeong-Ho & Park, Seung-Ha & Seo, Seok-Jang & Kim, Jin-Kuk, 2018. "Energy-efficient design and optimization of boil-off gas (BOG) re-liquefaction process for liquefied natural gas (LNG)-fuelled ship," Energy, Elsevier, vol. 148(C), pages 915-929.
    6. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1," Applied Energy, Elsevier, vol. 86(6), pages 781-792, June.
    7. Withey, Patrick & Johnston, Craig & Guo, Jinggang, 2019. "Quantifying the global warming potential of carbon dioxide emissions from bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    9. Feng Chen & Tatiana Morosuk, 2021. "Exergetic and Economic Evaluation of CO 2 Liquefaction Processes," Energies, MDPI, vol. 14(21), pages 1-13, November.
    10. Jin, Chunhe & Yuan, Yilong & Son, Heechang & Lim, Youngsub, 2022. "Novel propane-free mixed refrigerant integrated with nitrogen expansion natural gas liquefaction process for offshore units," Energy, Elsevier, vol. 238(PA).
    11. Yoo, Byeong-Yong, 2017. "The development and comparison of CO2 BOG re-liquefaction processes for LNG fueled CO2 carriers," Energy, Elsevier, vol. 127(C), pages 186-197.
    12. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    13. Yin, Liang & Ju, Yonglin, 2020. "Design and analysis of a process for directly Re-liquefying BOG using subcooled LNG for LNG carrier," Energy, Elsevier, vol. 199(C).
    14. Aspelund, Audun & Tveit, Steinar P. & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 3: The combined carrier and onshore storage," Applied Energy, Elsevier, vol. 86(6), pages 805-814, June.
    15. Jung, Jung-Yeul & Huh, Cheol & Kang, Seong-Gil & Seo, Youngkyun & Chang, Daejun, 2013. "CO2 transport strategy and its cost estimation for the offshore CCS in Korea," Applied Energy, Elsevier, vol. 111(C), pages 1054-1060.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    2. Al Baroudi, Hisham & Awoyomi, Adeola & Patchigolla, Kumar & Jonnalagadda, Kranthi & Anthony, E.J., 2021. "A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage," Applied Energy, Elsevier, vol. 287(C).
    3. Baccanelli, Margaret & Langé, Stefano & Rocco, Matteo V. & Pellegrini, Laura A. & Colombo, Emanuela, 2016. "Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis," Applied Energy, Elsevier, vol. 180(C), pages 546-559.
    4. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    5. Pospíšil, Jiří & Charvát, Pavel & Arsenyeva, Olga & Klimeš, Lubomír & Špiláček, Michal & Klemeš, Jiří Jaromír, 2019. "Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 1-15.
    6. Simon Roussanaly & Han Deng & Geir Skaugen & Truls Gundersen, 2021. "At what Pressure Shall CO 2 Be Transported by Ship? An in-Depth Cost Comparison of 7 and 15 Barg Shipping," Energies, MDPI, vol. 14(18), pages 1-27, September.
    7. Khan, Mohd Shariq & Lee, Sanggyu & Rangaiah, G.P. & Lee, Moonyong, 2013. "Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes," Applied Energy, Elsevier, vol. 111(C), pages 1018-1031.
    8. Hou, Mingyu & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Luo, Ercang, 2018. "A thermoacoustic Stirling electrical generator for cold exergy recovery of liquefied nature gas," Applied Energy, Elsevier, vol. 226(C), pages 389-396.
    9. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    10. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    11. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    12. Obara, Shin’ya & Yamada, Takanobu & Matsumura, Kazuhiro & Takahashi, Shiro & Kawai, Masahito & Rengarajan, Balaji, 2011. "Operational planning of an engine generator using a high pressure working fluid composed of CO2 hydrate," Applied Energy, Elsevier, vol. 88(12), pages 4733-4741.
    13. Pérez Sánchez, Jordán & Aguillón Martínez, Javier Eduardo & Mazur Czerwiec, Zdzislaw & Zavala Guzmán, Alan Martín, 2019. "Theoretical assessment of integration of CCS in the Mexican electrical sector," Energy, Elsevier, vol. 167(C), pages 828-840.
    14. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
    15. Jiang, Xi & Akber Hassan, Wasim A. & Gluyas, Jon, 2013. "Modelling and monitoring of geological carbon storage: A perspective on cross-validation," Applied Energy, Elsevier, vol. 112(C), pages 784-792.
    16. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
    17. Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case," Energy, Elsevier, vol. 45(1), pages 375-385.
    18. Jiang, Xi, 2011. "A review of physical modelling and numerical simulation of long-term geological storage of CO2," Applied Energy, Elsevier, vol. 88(11), pages 3557-3566.
    19. Yin, Liang & Ju, Yonglin, 2022. "Review on the design and optimization of BOG re-liquefaction process in LNG ship," Energy, Elsevier, vol. 244(PB).
    20. Yan, G. & Gu, Y., 2010. "Effect of parameters on performance of LNG-FPSO offloading system in offshore associated gas fields," Applied Energy, Elsevier, vol. 87(11), pages 3393-3400, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s036054422400327x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.