IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024817.html
   My bibliography  Save this article

Heterogeneous nucleation condensation of methane gas on the wall-A molecular dynamics study

Author

Listed:
  • Wang, Yue
  • Wang, Zhaoxi
  • Wang, Bingbing
  • Bian, Jiang
  • Hua, Yihuai
  • Cai, Weihua

Abstract

Methane is condensed in a low-temperature heat exchanger, a critical step in the liquefaction of natural gas. Currently, the microscopic mechanism regarding the heterogeneous condensation of methane on the heat exchanger wall remains unclear. This lack of understanding is of scientific importance in advancing the development of natural gas liquefaction processes. Therefore, molecular dynamics simulation is used in this paper to study the process of methane heterogeneous nucleation and core growth during the early stage of condensation, and analyze the influence mechanism of wall energy and cold source temperature on nucleation kinetics. The results show that the high-energy wall can enhance the interaction between cold wall atoms and methane molecules, facilitate heat transfer, accrete methane molecules to condense and adsorb on the wall to form a core, thus increasing the condensation rate of methane. Whereas, the low-temperature cold source promotes the condensation nucleation and growth process by increasing the supersaturation of methane. This study investigates the process and kinetic characteristics of heterogeneous nucleation of methane from a microscale perspective, providing guidance for the development of natural gas liquefaction in low-temperature heat exchangers, with the aim of enhancing the diversity and reliability of energy supply.

Suggested Citation

  • Wang, Yue & Wang, Zhaoxi & Wang, Bingbing & Bian, Jiang & Hua, Yihuai & Cai, Weihua, 2023. "Heterogeneous nucleation condensation of methane gas on the wall-A molecular dynamics study," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024817
    DOI: 10.1016/j.energy.2023.129087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bian, Jiang & Guo, Dan & Li, Yuxuan & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2022. "Homogeneous nucleation and condensation mechanism of methane gas: A molecular simulation perspective," Energy, Elsevier, vol. 249(C).
    2. Guo, Dan & Cao, Xuewen & Zhang, Pan & Ding, Gaoya & Liu, Yang & Cao, Hengguang & Bian, Jiang, 2022. "Heterogeneous condensation mechanism of methane-hexane binary mixture," Energy, Elsevier, vol. 256(C).
    3. Oh, Sechul & Park, Cheolwoong & Oh, Junho & Kim, Seonyeob & Kim, Yongrae & Choi, Young & Kim, Changgi, 2022. "Combustion, emissions, and performance of natural gas–ammonia dual-fuel spark-ignited engine at full-load condition," Energy, Elsevier, vol. 258(C).
    4. Yadav, Sandeep & Seethamraju, Srinivas & Banerjee, Rangan, 2023. "Cold energy recovery from liquefied natural gas regasification process for data centre cooling and power generation," Energy, Elsevier, vol. 283(C).
    5. Jo, Yeonpyeong & Shin, Kyeongseok & Hwang, Sungwon, 2021. "Development of dynamic simulation model of LNG tank and its operational strategy," Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Yifan & Liu, Le & Han, Hui & Liu, Liang & Cui, Jiachen & Li, Yuxing & Zhu, Jianlu & Liu, Miaoer, 2024. "Liquefaction efficiency study of heterogeneous condensation of methane-ethane binary gas mixtures with different component contents," Energy, Elsevier, vol. 306(C).
    2. Tian, Zhongyun & Zheng, Wenke & Guo, Jiwei & Jiang, Yiqiang & Liang, Zhirong & Mi, Xiaoguang, 2024. "Fundamental research on the condensation heat transfer of the hydrocarbon-mixture energy in a spiral tube described by a universal model using flow pattern based and general modes," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Zhelong & Liu, Shang & Qi, Yunliang & Chen, Qingchu & Wang, Zhi, 2024. "Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel," Energy, Elsevier, vol. 289(C).
    2. Wang, Fei & Li, Panfeng & Gai, Limei & Chen, Yujie & Zhu, Baikang & Chen, Xianlei & Tao, Hengcong & Varbanov, Petar Sabev & Sher, Farooq & Wang, Bohong, 2024. "Enhancing the efficiency of power generation through the utilisation of LNG cold energy by a dual-fluid condensation rankine cycle system," Energy, Elsevier, vol. 305(C).
    3. Bian, Jiang & Ding, Gaoya & Guo, Dan & Cao, Hengguang & Liu, Yang & Cao, Xuewen, 2023. "Surface crystallization mechanism of n-hexane droplets," Energy, Elsevier, vol. 263(PD).
    4. Marques, Pedro A. & Ahizi, Samuel & Mendez, Miguel A., 2024. "Real-time data assimilation for the thermodynamic modeling of cryogenic storage tanks," Energy, Elsevier, vol. 302(C).
    5. Guo, Dan & Cao, Xuewen & Ma, Lihui & Zhang, Pan & Liu, Yang & Bian, Jiang, 2023. "Bulk and interfacial properties of methane-heavy hydrocarbon mixtures," Energy, Elsevier, vol. 284(C).
    6. Bian, Jiang & Guo, Dan & Li, Yuxuan & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2022. "Homogeneous nucleation and condensation mechanism of methane gas: A molecular simulation perspective," Energy, Elsevier, vol. 249(C).
    7. Cao, Yan & Mohammadian, Mehrnoush & Pirouzfar, Vahid & Su, Chia-Hung & Khan, Afrasyab, 2021. "Break Even Point analysis of liquefied natural gas process and optimization of its refrigeration cycles with technical and economic considerations," Energy, Elsevier, vol. 237(C).
    8. Chen, Yanhui & Zhang, Jian & Zhang, Zhiqing & Zhang, Bin & Hu, Jingyi & Zhong, Weihuang & Ye, Yanshuai, 2024. "Effect of ammonia energy ratio and load on combustion and emissions of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 302(C).
    9. Liu, Jingyuan & Zhou, Tian & Yang, Sheng, 2024. "Advanced exergy and exergoeconomic analysis of a multi-stage Rankine cycle system combined with hydrate energy storage recovering LNG cold energy," Energy, Elsevier, vol. 288(C).
    10. Kim, Jeong Hwan & Lee, Min-Kyung & Jang, Wookil & Lee, Jae-Hun, 2023. "Strain behavior of very new high manganese steel for 200,000 m3 LNG cryogenic storage tank," Energy, Elsevier, vol. 271(C).
    11. Kim, Sungwoo & Lee, Jong-Gyu & Kim, Seongkyu & Heo, Joonyong & Bang, Chang Seon & Lee, Dong-Kil & Lee, Hoki & Park, Gunil & Lee, DongYeon & Lim, Youngsub, 2024. "Experiment and simulation of LNG self-pressurization considering temperature distribution under varying liquid level," Energy, Elsevier, vol. 290(C).
    12. Zhou, Mi & Ma, Shuhao & Zhang, Naiqiang, 2023. "Experimental investigation of LPG-releasing processes with varied damage sizes on a pressurized vessel," Energy, Elsevier, vol. 276(C).
    13. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.